موازنه چرخه و انرژی

Mass & Energy Balance

ویرایش اول

Basic Principles and Calculations in Chemical Engineering

مدرس جزو:

دکتر سید علی اشرفی زاده
عضو هیئت علمی دانشگاه آزاد اسلامی واحد دزفول

تدريس شده در دوره دوم سال تحصيلي 89-90

گروه آوری و ناپی:

بهرام علی نژاد داویدی
(دانشجوی مهندسی شیمی دانشگاه آزاد اسلامی واحد دزفول)

بهرام 1388

www.ShimiPedia.ir
مقدمه

با توجه به جایگاه ویژه ی درس موازنه جرم و انرژی در مهندسی شیمی و ارتباط عمیق آن با سایر دروس اصلی این رشته و توجه به این مسئله که عدم درک صحیح بسیاری از مفاهیم اساسی مهندسی شیمی از ضعف در دروس پایه و مفاهیم اولیه ناشی می‌گردد، وجود نسخه ای جامع در این زمینه می‌تواند نقش مؤثری در ارتقای سطح پادگنی مباحث مربوط ایفا نماید.

نسخه‌ی حاضر، جزوی‌ی درس موازنه ی جرم و انرژی است که توسط استاد ارجمند جناب دکتر اشرفی زاده عضو هیئت علمی دانشگاه آزاد اسلامی واحد تربت حیدریه در ترم دوم سال تحصیلی 96 - 97 تدریس گردیده و توسط انجمن گردآوری و ناپیش شده است. از ویژگی‌های این نسخه آموزشی می‌توان به پوشش کامل مطالب اساسی درس به صورت نکته به نکته همراه با نمونه‌های حل شده ی فراوان اشاره نمود.

امید است این نسخه گامی گذاری که در پی به‌پرداخت اهداف آموزشی گروه مهندسی شیمی تلقی گردد.

پیشانی بهزاد داوودی
بهار 1388

www.ShimiPedia.ir
عناوین مطالب

فصل اول - اصول محاسبات در مهندسی شیمی

کیفیت ها و واحد ها

این کیفیت ها مفهوم

مول

جرم اتمی و جرم مولکولی

جرم حجمی

وزن مخصوص (چگالی)

درجه ی (API)

حجم مخصوص

دبی (شدت جریان)

محاسبه دبی جریان، مولی و حجمی

جرم جریان، مولی و حجمی

آنالیز (تجزیه)

غلافت

منا

دما

فشار

فشار نسبی و مطلق

برقراری تعادل در لوله های حاوی سیالات

محاسبات استوکومتری

درجه تکثیر واکنش

میزان تبدیل

تولید انحلالی

پازده

فصل دوم - موازنه ماده

تعاریف و مفاهیم موازنه ماده

بررسی سیستم های بدون واکنش

بررسی سیستم های همراه با واکنش

انواع فرآیندهای شیمیایی در صنعت

برنامه ریزی برای تجزیه محاسبه مسئله موازنه ماده

www.ShimiPedia.ir
فصل سوم – خواص سیالات

گازها
معادله حالت گاز ایده آل
ثبت عمومی گازها
جرم ویژه و چگالی
قانون دالتون
محاسبه فشار جزئی
قانون آگاگات
محاسبه حجم جزئی

گازهای حقیقی
معادله واندروارد

معادله حالت تراکم بدیری برای گاز حقیقی
نمودار دما– فشار برای مواد خالص
نقشه بحرانی
مخلوط گازهای حقیقی

معادلات حالت
متوسط ثابت‌های دار معادل‌های حالت
متوسط ضرب تراکم بدیری
مشخصات شب بحرانی
فشاری برای
نکات پیش‌آمده نمودار دمای– فشار برای مواد خالص
حالات اشباع
کیفیت
جدول فشار اشباع
تشخیص حالات اشباع (با ماده اشباع و یا مافوق اشباع)
ارتباط مول، فشار، حجم هوا و بخار آب

تعادل گاز – ماع در سیستم های چندتایی (V.L.E)
قانون رانولد
قانون هنری

فصل چهارم - موازنه‌ی انرژی

انواع اصلی انرژی

W (کار)
Q (گرمای)

انرژی داخلی
آنالیزی
an

انرژی پنتاسیل
انرژی جنبشی

قانون اول ترمودینامیک

بیان ریاضی قانون اول ترمودینامیک

استفاده از ظرفیت حرارتی متوسط در محاسبه آنتالپی

محاسبه آنتالپی برای مخلوط‌ها

محاسبه آنتالپی با استفاده از جداول آنتالپی

پیدا کردن آنتالپی از جداول بخار

موازنه عمومی انرژی

موازنه انرژی همراه با واکنش‌های شیمیایی

نحوه لحاظ کردن تغییرات انرژی حاصل از واکنش در موازنه انرژی

ارزش حرارتی سوخت

ارتقاء بین گرمایی واکنش در فشار ثابت و گرمایی واکنش در حجم ثابت

موازنه انرژی در حالت‌های محصولات و ترکیب شونده‌ها در 25 درجه سانتی‌گراد (دمای مینا) نیازمند

محاسبه دما آدیاباتیک شعله

مرجع مورد استفاده:

اصول بینانی و مبانی محاسبات در مهندسی شیمی

نوشته دویده هیمل بلاو - ترجمه دکتر مرتضی سهرابی

www.ShimiPedia.ir
فصل اول:
اصول محاسبات در مهندسی شیمی
کمیت‌ها و واحد‌ها

نکته 1- هیچ عدد بدون بعد و واحدی مفهوم فیزیکی نخواهد داشت.

نکته 2- در جمع و تقسیم کمیت‌های فیزیکی فقط آن دسته از کمیت‌هایی حق دارند با یکدیگر جمع
شوند (یا تقسیم شوند) که جنس آنها یکی باشد. (نه لزوماً واحد آنها)

نکته 3- ضرب و تقسیم کمیت‌های فیزیکی حتی اگر دارای واحد مشترک با یک جنس مشترک هم
نیاشند امکان پذیر است.

مثال:

نادرست

3kg + 2m
3kg + 2kg = 5kg
2kg + 2g

قابل جمع و تقسیم سازی اما به دلیل عدم جنس مشترک نیست.

مثال:

\[F = m \times a \]
\[\rho = \frac{m}{V} \]

انواع کمیت‌ها

1- کمیت‌های اصلی: کمیت‌هایی که وجودشان وابسته به کمیت دیگری نیست. تعداد آنها محدود است و بهینه مترن آنها عبارتند از: طول، جرم، زمان، مول و دما.

2- کمیت‌های فرعی: کمیت‌هایی که وجودشان وابسته به کمیت دیگری است. تعداد آنها نامحدود بوده و بهینه مترن آنها عبارتند از: نیرو، دانش، لازم، دیسپل، سطح و...

اینکه هر کمیت را چگونه انداده می‌گیریم و معیار سنگش آن چیست را واحد آن کمیت گویند. از آنچه که ریشه‌های آهاده مختلفی وجود دارد یکی از جمله حاضر نیز در صنایع مختلف از آنها استفاده می‌شود به ناجار می‌باشد. با آنها آشنا شد و ضرایب تبادل این واحد ها به یکدیگر را دانست.

www.ShimiPedia.ir
جدول یک‌ها در سیستم‌های مختلف

تذکر ۱: دیمانسیون هر کمیت نشان دهنده ی جنس آن کمیت می باشد که با حروف انگلیسی بطور قراردادی نشان داده می شود.

تذکر ۲: اعداد و پارامترهایی که در توابع ریاضی قرار می‌گیرند بدون بعد و واحد در نظر گرفته می‌شوند.

برخی از تبدیل‌های مهم در زیر آورده شده است:

مثال: 50 پوند چند کیلو گرم است؟

1 Ib = 0.454 Kg

\[
50 \text{Ib} \times \frac{0.454 \text{kg}}{1 \text{Ib}} = 50 \times 0.454 \text{kg} = 22.7 \text{Kg}
\]

یک فیزیکی: یک فیزیکی از ارتباط بین آحاد در سیستم‌های مختلف به‌دست می‌آید و دارای خاصیتی است که به‌طور همزمان کمیت فیزیکی را تعیین می‌کند. بنابراین کمیت را عوض کند.

نکته: می‌توان به شمار یک فیزیکی تعريف کرد ولي با به نوع مسئله می‌باشد از یک فیزیکی صحیح و مناسب با تبدیل واحد استفاده نمود.

نکته: یک فیزیکی یک عامل خاصی در ضرب است.
مثال:

\[11bm = 0.454 \text{ Kg} \]

\[\frac{11bm}{0.454 \text{ Kg}} = \frac{0.454 \text{ Kg}}{0.454 \text{ Kg}} \]

\[\Rightarrow \text{یک فیزیکی} \quad \frac{11bm}{0.454 \text{ Kg}} = 1 \]

تذکر: در صورت نیاز می توان از یک فیزیکی چند بار به طور متوازن استفاده کرد.

مثال: اگر هواپیما با سرعت 2200\text{ft/s} حرکت کنند سرعت آن را بر حسب کیلومتر بر ساعت بدست آورده؟

\[2200 \frac{ft}{s} \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{2.54 \text{ cm}}{1 \text{ in}} \times \frac{1 \text{ m}}{100 \text{ cm}} \times \frac{1 \text{ km}}{1000 \text{ m}} \times \frac{60 \text{ sec}}{1 \text{ min}} \times \frac{60 \min}{1 \text{ hr}} = 950.4 \text{ km/hr} \]

تذکر: در صورت نیاز می توان یک فیزیکی را به سرعت \(1500 \text{ in}^3 \) باشد حجم را بر حسب \(m^3 \) بدست آورده؟

\[1500\text{in}^3 = ?m^3 \]

\[1\text{in}^3 = (2.54\text{cm})^3 \Rightarrow 1\text{in}^3 = 2.54^3\text{cm}^3 \Rightarrow \frac{1\text{in}^3}{2.54^3} = 1 \]

\[\Rightarrow 1500\text{in}^3 \times \frac{2.54^3\text{cm}^3}{1\text{in}^3} = \frac{1\text{m}^3}{100^3\text{cm}^3} = 2.458 \text{ m}^3 \]

مثال: چنانچه یک لوله روزانه 400\text{in}^3 آب را به داخل یک مخزن هدایت کند محاسبه کنید که در هر دقیقه چند cm\(^3\) آب وارد مخزن می شود؟

\[\frac{400\text{in}^3}{\text{day}} = \frac{? \text{ cm}^3}{\text{min}} \]

\[\frac{400\text{in}^3}{\text{day}} \times \frac{2.45^3\text{cm}^3}{1^3\text{in}^3} \times \frac{1\text{day}}{24 \times 60 \text{ min}} = 4.5 \text{ cm}^3/\text{min} \]
مثال: درصورتی که ضریب انتقال حرارت از یک لوله توسط رابطه $h = 0.02G$. \(\frac{D^{0.6}}{D^{0.4}} \) بدست آید که در آن G ضریب انتقال حرارت بر حسب $\frac{Btu}{hr ft^2}$ و D شدت گریان بر حسب $\frac{Btu}{hr ft^2}$ باشد و بخواهیم h را بر حسب $\frac{cal}{min cm^2 ^{0}C}$ قطع خارجی بر حساب چه خواهد بود؟

حل:

$1 Btu = 252 Cal$

$1 hr = 60 min$

$1 lin = 2.54 cm$

$1 ft = 12 in$

$1^\circ C = 1.8^\circ F$

$h = (0.02G \frac{G^{0.6}}{D^{0.4}}) 1 Btu 252 Cal 1 hr 60 min 1 ft 144 in^2 2.54^2 in^2 1^\circ C = (2.11 \times 10^{-4} \frac{G^{0.6}}{D^{0.4}}) 1 Cal 10^2 10^{1.2} min 60^{0.16} sec$

در مثال قبل چنانچه بخواهیم D به ترتیب بر حسب واحدهای $lbm/hr ft^2$ و G به بالا گذاری و h به یک واحد شوند و به $Cal/min.cm^2^{0}C$ و lin به یک واحد بدون D و G محاسبه می‌شوند. در مثال قبل آمده در همان واحدهای h به D و G مانند باشد و بر حسب تابع باشد. $\frac{Cal}{min.cm^2^{0}C}$ و lin به درجه باشد.

$h = 2.11 \times 10^{-4} 1 \frac{D^{0.6}}{D^{0.4}} 12 in \frac{12 in}{1 ft} 2.54 \frac{cm}{1 in}^{0.4}$

$= 2.11 \times 10^{-4} 1 \frac{G^{0.6}}{D^{0.4}} = 3.10^{-6} 1 \frac{G^{0.6}}{D^{0.4}}$

مثال: چنانچه در رابطه زیر D فاصله و بر حسب میکرون، t زمان و بر حسب ثانیه باشند، فرمول را به نحوی تغییر دهید که D بر حساب t و D بر دقیقه باشد.

$d = 16.2 - 16.2e^{-0.02t}$

$d = 16.2 \mu 10^{-6} m 100 cm 1 \mu 1 m 2.54 cm 10^{-6} m 100 cm 1 \mu 1 m 2.54 cm 0.02 \frac{sec}{1 min}$

$\Rightarrow d = 0.38 \times 10^{-4} - 0.38e^{-1.26t}$
در سیستم مهندسی به دو دلیل از ثابت g_c استفاده می‌شود:

1- تعیین واحدها در فرمول‌های اولین قانون دوم نیوتن
2- یکی کردن عدد جرم و عدد وزن

مقدار عددی عددی بر حسب g_c در 32.174 و به صورت $lbm. ft$ با مساویت $F=m.a/g_c$ می‌توان به آوردن F بر حسب $lbm. ft$ با بایستی $W = m.g/g_c$ به $W = m.g/g_c$ با توجه به واحد g_c و برای یکی بالای عدد جرم و عدد وزن می‌باشد مقدار عددی $W = m.g/g_c$ برای 32.174 باشد.

با لحاظ کنید با این کار انرژی بر حسب $ft. lb$ به درستی می‌آید و روابط زیر را به کار می‌بریم:

$$W = F.d = \frac{m.g}{g_c}.d$$

$$\Rightarrow lb_m \times \frac{ft}{sec} \times \frac{ft}{lbm. ft} = ft. lb_f$$

مثال: جسمی به چه وزنی بر حسب $10lb_m$ داریم؟

$$W = m.g/g_c \Rightarrow W = 10 \times \frac{32.2}{32.174} \approx 10 lb_f$$

مثال: آب بوسیله یک خط لوله و با سرعت $100lb_m$ در حال حرکت است انرژی $1Btu = 778 lb_f. ft$

$$g_c = 32.174 \frac{lbm. ft}{sec^2. lb_f}$$

$$g = 32.2 \frac{ft}{sec^2}$$

$$E_k = \frac{1}{2} \frac{mV^2}{g_c} = \frac{1}{2} \times \frac{100 \times 10^2}{32.174} = 155 lb_f \times \frac{1Btu}{778 lb_f. ft} = 155 \frac{1Btu}{778}$$
مثال: انرژی بانالی یک بشکه آب را که محوزی 100lbm می باشد و نسبت به سطح زمین ارتفاع 10 ft را محاسبه کنید.

\[E_p = \frac{mgh}{g} = \frac{100 \times 32.2 \times 10}{32.174} = 1001 \text{ lbm} \]

مول (Mole)

طبق آزمایشات آرو گاد و یک گرم مول از هر ماده دارای تعداد \(\times 10^{23} \) ذره بینادی از آن ماده است.

1 g mole = 6.02 \(\times 10^{23} \) ذره بینادی
1 lb mole = 454 g mole = 454 \(\times 6.02 \times 10^{23} \)
1 K mole = 1000 g mole = 1000 \(\times 6.02 \times 10^{23} \)

نکته 1: ذره بینادی (تشکیل دهنده) برای مواد ساندی تک اتمی، اتم و برای مقدار مربوط به یا مواد ساده چند اتمی، مولکول است.

نکته 2: چنانچه کلمه مول به نتیجه به کار رود منظور گرم مول است.

مفهوم وقیعی: گرم مولی یک گرم مول آهن منظور \(10 \times 6.02 \times 10^{23} \) اتم آهن است. وقیعی مول آب منظور \(10 \times 6.02 \times 10^{23} \) مولکول آب است.

جرم اتمی و جرم مولکولی

جرم اتمی: جرم اتمی یک جسم به تعداد \(10^{23} \times 6.02 \) اتم بر حسب گرم را جرم اتمی می نامیم (به عبارت دیگر جرم یک گرم مول از هر ماده بر حسب گرم).

جرم مولکولی: جرم مولکولی یک جسم به تعداد \(10^{23} \times 6.02 \) مولکول بر حسب گرم را جرم مولکولی می نامیم (به عبارت دیگر جرم یک گرم مول از هر ماده بر حسب گرم).

www.ShimiPedia.ir
نتکه 1 - جرم اتمی برای مواد ساده تک اتمی و جرم مولکولی برای مواد مرکب و مواد ساده چند اتمی کاربرد دارد.

نتکه 2 - از آنجایی که جرم اتمی و جرم مولکولی کمیت های فرعی هستند لذا می‌باشد محاسبه شود. رابطه محاسبه آنها به صورت زیر است.

\[M = \frac{m}{n} \]
\[m = \text{جرم} \]
\[n = \text{تعداد مول} \]
\[M = \text{جرم اتم با مولکولی} \]

نتکه 3 - با توجه به رابطه فوق می‌توان دیمانسیون جرم اتمی و جرم مولکولی را به صورت زیر بدست آورد.

\[[M] = \frac{[m]}{[n]} = \frac{M}{\text{mole}} \]
\[[M] = M \text{ mole}^{-1} \]

نتکه 4 - با توجه به دیمانسیون بدست آمده برای جرم اتمی و جرم مولکولی می‌توان واحدهای اصلی زیر را برای این کمیت ها معرفی کرد.

استاندارد SI, cgs:

\[\frac{\text{gr}}{\text{gmole}} \]

مهندسی (Eng):

\[\frac{\text{lbm}}{\text{lbmole}} \]

ور strand:

\[\frac{\text{Kg}}{\text{Kmole}} \]

نتکه: برای برقراری ارتباط بین اعداد جرم اتمی و جرم مولکولی در واحد های گوناگون به عنوان مثال مس را در نظر می‌گیریم:

\[Cu = 64 \frac{\text{gr}}{\text{gmole}} \times \frac{\text{lbm}}{454 \text{gr}} = 64 \frac{\text{lbm}}{\text{lbmole}} = 64 \frac{\text{Kg}}{\text{Kmole}} \]
با توجه به نمونه فوق می توان گفت که عدد جرم اتمی و جرم مولکولی در واحد های مختلف بکی است یعنی $cu = 64 \frac{gmole}{lbmole}$
اینکه یک مس 64گرم جرم دارد و یا اینکه وقی مس گوییم مس
این است که یک lbmole 64 پوند جرم دارد.
تذکر: مول از نظر لغوی به توده و انباشته ترجمه شده است که به درستی بیان گنده مفهوم فیزیکی و علمی این وازه نیست.

دانشیه (جرم حجمی) (جرم وزن)

$\rho = \frac{m}{V}$

$[\rho] = \frac{[m]}{[V]} = \frac{M}{L^3} = M . L^{-3}$

نکته 1: برخی مباحث در اثر تغییر فشار از خود تغییر حجم نشان می دهد این مباحث را مباحث تراکم به نام داده‌اند.
نکته 2: برای مباحث تراکم نادیر و جامدات دانشیه تا پیش تغییر نیست و فقط تغییر دما است. ولی برای گازها و مباحث تراکم پذیر به نام دما و هم تغییر فشار است.
نکته 3: برای مواد ناخالص علاوه بر مطالعه قابل دانشیه تغییر گازی هست.
نکته 4: از آنجاییکه در برخی مباحث مهندسی تغییرات دانشیه و مطالعه روی آن همیشه بسزایی دارند. یک سری گرافها و نمودار هایی که از طریق آزمایش که از آن همیشه استفاده قرار می گیرند.
نکته 5: جانچه در مسئله ای دما و فشار قید نشوند حالت STP فرض می شود. 1atm تا 25 درجه سانتی‌گراد و فشار 1atm بوده اما برای گازها صفر.
Specific gravity (وزن مخصوص)
نسبت جرم حجمی جسم به جرم حجمی جسم مینا را چگالی آن جسم می نامند.

\[Sp.gr = \frac{\rho_{a,T,p}}{\rho_{o,T,p}} \]

نکته 1: ماده‌ی مینا برای مایعات و جامدات آب و یا گازهای هواست.

نکته 2: صورت و مخرج می باست دارای یک واحده باشد.

طريه‌ی بیان چگالی:
معمولاً بايد دماي هر كدام از دو ماده مشخص باشد به عنوان مثال اگر وزن مخصوص یک جسم جامد بصورت زیر داده شده باشد:

\[Sp.gr = 0.73 \frac{20^\circ C}{40^\circ C} \]

منظور این است که جرم حجمی ماده مورد نظر در دماي 20 درجه سانتیگراد تقسيم بر جرم حجمی آب در 2 درجه سانتیگراد برای 0.73 است که همان چگالی جسم می باشد. چنانچه دماي پيدي نشود منظور این بوده که هر دو جسم در شرایط STP بوده اندو یا اگر برای یکی از مواد دما مشخص شود برای آن مادة نيز صادق است که در اين صورت نيازي به بان دما در كنار عدد چگالی نیست.

تذکر: در برخي مواد دراي چگالی امکان دارد و اين صورت و اين مخرج يكي نياشد كه در آن صورت می باست حتما واحده آنها بان شود به عنوان مثال اگر يک چگالی بصورت زیر داده شده باشد:

\[Sp.gr = 150 \frac{20^\circ C}{40^\circ C} \frac{Kg}{m^3} \frac{cm}{cm^3} \]

منظور اين بوده كه دانسيت جسم مورد نظر در دماي 20 درجه سانتيگراد و بر حسب \(\frac{Kg}{m^3} \) بر دانسيت جسم مینا در دماي 2 درجه سانتيگراد و بر حسب \(\frac{cm}{cm^3} \) تقسيم شده است.
مثال: چنانچه وزن مخصوص یک جسم جامد 1.25 باشد جرم حجمی آن را بر حسب

\[\rho_{H_2O} = 1 \frac{gr}{cm^3} \]

حساب کنید در صورتی که باشد.

راه حل اول:

\[\text{lbm/ ft}^3 = \text{sp. gr} = \frac{\rho_a}{\rho_o} \]

و تبدیل آن به \(\rho_0 \) محاسبه:

\[\rho_a = \frac{1.25 gr}{cm^3} \times \frac{lbm}{454 gr} \times \frac{2.54^3 cm^3}{lin^3} \times \frac{12^3 in^3}{1 ft^3} = 77.9 \frac{lbm}{ft^3} \]

راه حل دوم:

\[\text{sp. gr} = \frac{\rho_a}{\rho_o} \]

و استفاده از آن در رابطه \(\text{lbm/ ft}^3 = \text{gr/ cm}^3 \rho_{H_2O} \)

\[\rho_o = \frac{1 gr}{cm^3} \times \frac{lbm}{454 gr} \times \frac{2.54^3 cm^3}{lin^3} \times \frac{12^3 in^3}{1 ft^3} = 62.4 \frac{lbm}{ft^3} \]

\[\Rightarrow 1.25 = \frac{\rho_a}{62.4 \frac{lbm}{ft^3}} \Rightarrow \rho_a = 1.25 \times 62.4 = 78 \frac{lbm}{ft^3} \]

مثال: اگر جرم حجمی آب در 2 درجه سانتی‌گراد برای \(\frac{gr}{cm^3} \) باشد و چگالی یک جسم بصورت

\[0.73 \frac{20^\circ C}{4^\circ C} \]

داشته باشند جرم حجمی آن را بر حسب \(\frac{lbm}{ft^3} \) بستد آورد.

\[0.73 = \frac{\rho_{solid \ at \ 20^\circ C}}{\rho_{H_2O \ at \ 4^\circ C}} \]

\[\Rightarrow \rho_{solid \ at \ 20^\circ C} = 1 \times 0.73 gr \times \frac{lbm}{454 gr} \times \frac{2.54^3 cm^3}{lin^3} \times \frac{12^3 in^3}{1 ft^3} = 0.73 \times 2.54^3 \times 12^3 \frac{lbm}{454 ft^3} \]

\[\text{API (API)} \]

در صنعت نفت چگالی موارد نفتی را غالباً توسط مقياسی به نام درجه API می‌سنجند که از رابطه \(\text{API} \)

\[\text{API} = 141.5 - 131.5 \Rightarrow \text{Sp. gr} \times \frac{60^o F}{60^o F} = \frac{141.5}{\text{API} + 131.5} \]
حجم مخصوص (specific volume)

حجم واحد جرم را گویند.

\[\nu = \frac{V}{m} \]

\(\nu \) حجم مخصوص
\(m \) جرم
\(V \) حجم

[\(\nu \)] = \(L^3 \cdot M^{-1} \)

نکته 1: برخی مواقع حجم مخصوص را به صورت مولی بیان می‌کنند که عبارت است از حجم واحد مول و از رابطه زیر محاسبه می‌شود:

\[\hat{V} = \frac{V}{n} \]

\(V \) حجم
\(n \) تعداد مول
\(\hat{V} \) حجم مخصوص مولی

[\(\hat{V} \)] = \(L^3 \cdot \text{Mole}^{-1} \)

تذکر: \(\hat{V} \) را بخوانید وی بار نکته 2: حجم مخصوص در جداول ترمودینامیکی کاربرد فراوان دارد.
دبی (Flow rate) (دبی چریان)
در چریان های پیوسته دبی چریان عبارت است از مقدار ماده ی عبوری در واحد زمان از یک مقطع.

مقدار ماده عبوری می تواند بر حسب جرم یا مول یا حجم بیان شود.

انواع دبی:
1- دبی جرمی (m): جرم عبوری در واحد زمان
\[\dot{m} = \frac{m}{t} \]
\[[\dot{m}] = M \cdot T^{-1} \]

2- دبی حجمی (V): حجم عبوری در واحد زمان
\[\dot{V} = \frac{V}{t} \]
\[[\dot{V}] = L^3 \cdot T^{-1} \]

3- دبی مولی (n): مول عبوری در واحد زمان
\[\dot{n} = \frac{n}{t} \]
\[[\dot{n}] = Mole \cdot T^{-1} \]

محاسبه دبی جرمی:
\[\dot{m} = \rho \cdot u \cdot A \]
\[[\dot{m}] = \frac{M}{L^3} \times \frac{L}{T} \times L^2 = M \cdot T^{-1} \]

دانشجو
سرعت
سطح عضو بر چریان
تذکر:
محاسبه دبی حجمی

\[\rho = \frac{m}{t} = \frac{\dot{m}}{V} \Rightarrow \dot{V} = \frac{\dot{m}}{\rho} \]

\[\dot{V} = \frac{\rho \cdot u \cdot A}{\rho} = u \cdot A \]

محاسبه دبی مولی

\[M = \frac{m}{n} = \frac{\dot{m}}{\dot{n}} \Rightarrow \dot{n} = \frac{\dot{m}}{M} = \frac{\rho \cdot V \cdot A}{M} \]

تذکر: در رابطه فوق جرم مولکولی است.

مثال: چنانچه ماده ای با جرم حجمی \(\frac{800 \text{ kg}}{m} \) و با سرعت \(\frac{3m}{s} \) از یک لوله استوانه ای شکل به قطر 4\(\text{in} \) عبور کند، دبی حجمی، حجمی و مولی آن را محاسبه کنید.

\(\ddot{m} = \rho \cdot u \cdot A = 800 \text{ kg/m}^3 \cdot \frac{3m}{s} \cdot \frac{\pi \times 4^2 \text{in}^2}{4} = \frac{2.54^2 \text{cm}^2}{1^2 \text{in}^2} \cdot \frac{1 \text{m}^2}{100 \text{cm}^2} = 19.46 \text{ kg/sec} \)

\(A = \pi \cdot R^2 = \pi \cdot \frac{D^2}{4} \)\(\text{تذکر:} \)

\[\dot{V} = \frac{\ddot{m}}{\rho} = 19.46 \frac{\text{kg}}{\text{sec}} \cdot \frac{\text{kg}}{800 \text{ kg/m}^3} = 1.24 \frac{\text{m}^3}{\text{sec}} \]

\[\dot{n} = \frac{\ddot{m}}{M} = 19.46 \frac{\text{kg}}{\text{sec}} \cdot \frac{18 \text{ kg/kmole}}{18 \text{ kg/kmole}} = 1.08 \frac{\text{kmole}}{\text{sec}} \]
مثال: شدت جریان خروجی یک نوع دارو از یک راکتور که دارای جرم مولکولی ۱۹۲ می‌باشد، گلظت دارو ۲/۱۱ مولول در آب و چگالی آن ۱۱۰/۱ است. گلظت دارو را بر حسب کیلوگرم بر لیتر در جریان خروجی و دبی جریان خروجی را بر حسب کیلومول بر دقیقه محاسبه کنید.

\[\rho_{H_2O} = 1000 \text{ Kg/m}^3 \]

\[\dot{V} = 10.5 \text{ lit/min} \]

\[M = 192 \]

\[C = 41.2\% \]

\[Sp.gr = 1.024 \]

\[C_{out} = \frac{\gamma}{Kg\text{ lit}} \]

\[n = \frac{\gamma}{Kmole\text{ min}} \]

با فرض اینکه ۴۱.۲۲٪ دار آب باشد:

\[\frac{41.2\text{ Kg}}{100\text{ Kg}_{H_2O}} \times \frac{1000\text{ Kg}_{H_2O}}{1\text{ m}^3} = \frac{0.412\text{ Kg}}{1000\text{ Lit}} \]

اگر فرض کنیم ۴۱.۲٪ مقدار حل شونده در هر لیتر محلول باشد داریم:

\[\frac{41.2\text{ Kg}}{100\text{ Kg}_{solution}} \times \frac{1.024\times1000\text{ Kg}_{solution}}{1\text{ m}^3} = \frac{0.422\text{ Kg}}{1000\text{ Lit}} \]

با فرض اینکه جرم مولکولی داده شده مربوط به هر لیتر محلول باشد:

\[\dot{V} = \frac{\dot{m}}{\rho} \Rightarrow \dot{m} = \dot{V}\rho \]

\[\dot{n} = \frac{\dot{m}}{M} + \frac{\dot{V}\rho}{M} = 10.5\text{ Lit/min} \times \frac{1024\text{ Kg}}{1\text{ m}^3} \times \frac{1\text{ m}^3}{1000\text{ Lit}} = 0.056\text{ Kmole/min} \]

با فرض اینکه ۱۹۲ جرم مولکولی حل شونده باشد:

\[\frac{0.422\text{ Kg}_{solution}}{10.5\text{ Lit}_{solution}} \times \frac{1\text{ Kmole}_{solution}}{192\text{ Kgs}_{solution}} = 0.023\text{ Kmole/min} \]
نکته:
به مثال های زیر در گرد کردن اعداد توجه کنید:

در 20.465 عدد 6 زوج بوده و به صورت 20.46 گرد می شود.

در 20.455 عدد 5 فرد بوده و به صورت 20.46 گرد می شود.

جزء جرمی

mass_fraction = \frac{m_A}{m_t}

عبارت است از جرم ماده A تقسیم بر جرم کل محلول یا مخلوط

جزء مولی

mole_fraction = \frac{n_A}{n_t}

عبارت است از تعداد مول ماده A تقسیم بر تعداد مول کل محلول یا مخلوط

جزء حجمی

volume_fraction = \frac{V_A}{V_t}

عبارت است از حجم ماده A تقسیم بر حجم کل محلول یا مخلوط

نکته 1: درصد = جزء × 100

نکته 2: در محاسبه ی جزء‌ها واحد صورت و مخرج با یکی باشد.

نکته 3: مجموع درصد های اجزا محلول یا مخلوط = 100

مجموع جزء‌های اجزا محلول یا مخلوط = 1
نکته ۴: گاهی اوقات از عبارت جزء وزنی هم استفاده می‌شود:

\[
\text{جزء جرمی} = \frac{m_A}{m_t} = \frac{g \times m_A}{g \times m_t}
\]

درصد وزنی = درصد جرمی

نکته ۵: معمولاً جزئی دراز را با یک چنین و جامد را با یک چنین و در فاز گاز را با یک چنین می‌شوم.

مثال: یک محلول صنعتی تیمی کننده شامل ۵ کیلوگرم NaOH و ۵ کیلوگرم H₂O آب را در دو کیلوگرم NaOH و ۵ کیلوگرم H₂O می‌باشد جزء مولی و جزء وزنی هر کدام را محاسبه کنید.

\[
\begin{align*}
5\text{Kg.}H_2O & \\
5\text{Kg.NaOH} & \\
\end{align*}
\]

\[
\begin{align*}
\text{mass.fraction} & \\
x_{H_2O} &= \frac{m_{H_2O}}{m_{H_2O} + m_{NaOH}} = \frac{5}{5+5} = 0.5 \\
x_{NaOH} &= 1 - x_{H_2O} = 0.5 \\
\end{align*}
\]

\[
\begin{align*}
\text{mole.fraction} & \\
\hat{x}_{H_2O} &= \frac{n_{H_2O}}{n_{H_2O} + n_{NaOH}} = \frac{\frac{m_{H_2O}}{M_{H_2O}}}{\frac{m_{H_2O}}{M_{H_2O}} + \frac{m_{NaOH}}{M_{NaOH}}} = \frac{5}{\frac{5}{18} + \frac{5}{18}} = 0.69 \\
\hat{x}_{NaOH} &= 1 - \hat{x}_{H_2O} = 0.31 \\
\end{align*}
\]
مثال: جانچه در یک محلول گازی 3 موله متن با 3 موله آتان مخلوط شود و دوازده شرایط STP
نیز باشیم جزء های جرمی، مولی و حجمی را محاسبه کنیم؟

محاسبه جزء های مولی:

\[n_{CH_4} \] 3\(n_{C_2H_6} \) 3
\[\frac{n_{CH_4}}{n_{CH_4} + n_{C_2H_6}} = \frac{3}{3+3} = 0.5 \]
\[\frac{n_{C_2H_6}}{n_{CH_4} + n_{C_2H_6}} = \frac{3}{3+3} = 0.5 \]

محاسبه جزء های جرمی:

\[\frac{n_{CH_4} M_{CH_4}}{n_{CH_4} M_{CH_4} + n_{C_2H_6} M_{C_2H_6}} = \frac{3 \times 16}{3 \times 16 + 3 \times 30} = 0.35 \]
\[\frac{n_{C_2H_6} M_{C_2H_6}}{n_{CH_4} M_{CH_4} + n_{C_2H_6} M_{C_2H_6}} = \frac{3 \times 30}{3 \times 16 + 3 \times 30} = 0.65 \]

\[PV = nRT \Rightarrow V = \frac{nRT}{P} \]

\[\frac{V_{CH_4}}{V_{CH_4} + V_{C_2H_6}} = \frac{n_{CH_4} RT}{P} \left(\frac{RT}{P} \right) \left(n_{CH_4} + n_{C_2H_6} \right) = 0.5 \]

برای محاسبه جزء حجمی اتان نیز به همین صورت عمل می کنیم.
آنالیز (تجزیه)
آنالیز عبارت است از بیان مقادیر اجزاء موجود در محصول یا محصول بر حسب درصد.

انواع آنالیز عبارتند از (جرمی)، (وزنی)، (مولولی) و (حجمی).

نکته ۱: برای مایعات و جامدات همواره فرض بر این است که آنالیز به صورت جرمی (وزنی) است.

مگر اینکه خلاف آن گفته شده باشند برای غازهای فرض بر این است که آنالیز بر حسب درصد حجمی است.

مگر آنکه خلاف آن گفته شود.

نکته ۲: در مورد گازهای ایزیده آل آنالیز مولولی و حجمی با هم برابرند.

نکته ۳: جنایی در محاسبه ی آنالیز گاز ها آب منظور نگردید این آنالیز را آنالیز ارسات

می نامند.

نکته ۴: در مورد گازهای غیر ایزیده آل نیز در این درس همواره فرض می کنیم آنالیز مولولی باشد مگر آنکه در مسئله خلاف آن گفته شده باشد.

نکته ۵: در این درس همه ی گاز ها را ایزیده آل فرض می کنیم مگر آنکه خلاف آن گفته شده باشد.

مثال: در صورتی که آنالیز هوای شامل ۲۱/٪ اکسیژن و ۷۹/٪ نیتروژن باشد جرم مولکولی هوا را محاسبه کنید؟

\[
100\text{g mole} : \text{air} = \begin{cases} 21\text{g mole} : O_2 \\ 79\text{g mole} : N_2 \end{cases}
\]

\[
M_{\text{air}} = \frac{m_{\text{air}}}{n_{\text{air}}} = \frac{m_{O_2} + m_{N_2}}{100\text{g mole}} = \frac{n_{O_2}M_{O_2} + n_{N_2}M_{N_2}}{100\text{g mole}}
\]

\[
21\text{g mole} \times 32\text{gr/g mole} + 79 \times 28\text{gr/g mole} \]

\[
100\text{g mole} = 29\text{gr/g mole}
\]
غلظت

غلظت عبارت است از مقداری از حل شونده بر حسب مول یا جرم یا حجم که در مقدار معینی از حل محلول بر حسب مول یا جرم یا حجم وجود داشته باشد.

حل محلول: solvent
حل شونده: solute
حلول: solution

واحد های غلظت: با توجه به تعیین فوق غلظت می توانند واحدهای مختلفی داشته باشند.

حل محلول

حجم

\[
\{ \begin{align*}
g & \text{kg} \\
gr & \text{gr} \\
lbm & \text{lbm} \\
\ldots & \\
m^3 & \text{m}^3 \\
cm^3 & \text{cm}^3 \\
mm^3 & \text{mm}^3 \\
\ldots & \\
gmol & \text{gmol} \\
lbmole & \text{lbmole} \\
kmole & \text{kmole} \\
\ldots & \\
\end{align*} \]

جرم:

حجم حلال (حل محلول):
تذکر: چنانچه در بیان واحد غلظت اشاره ای نشود فرض بر این است که مقدار حل شونده به ازای واحد محلول داده شده است.

دو واحد خاص در غلظت عبارتند از:

\[
\text{p.p.m} : \text{(part per million)} \\
\text{p.p.b} : \text{(part per billion)}
\]

جرمی: مقدار جرم حل شونده در \((10^9)\), ۱۰۶ واحد جرم محلول
جرم حل شونده
\[
= \frac{(10^9)}{10^6} \text{ واحد جرم محلول}
\]
مولی: تعداد مول حل شونده در \((10^9)\), ۱۰۶ واحد مول محلول
تعداد مول حل شونده
\[
= \frac{(10^9)}{10^6} \text{ واحد مول محلول}
\]
حجمی: مقدار حجم حل شونده در \((10^9)\), ۱۰۶ واحد حجم محلول
مقدار حجم حل شونده
\[
= \frac{(10^9)}{10^6} \text{ واحد حجم محلول}
\]

نکته ۱: در بیان انواع غلظت های \text{ppb} و \text{ppm} بايد واحد صورت و مخرج یکی باشد.
نکته ۲: در تمام تعاریف می توان به جای کلمه \text{محلول} از کلمه حلال استفاده کرد. (بدلیل اینکه عدد حل شونده در مقابل عدد حلال قابل صرف نظر کردن است)
نکته 3: در بیان ppb و ppm چنانچه خلاف آن جمله‌نشده باشد برای مایعات و جامدات همواره ppb و ppm داده شده و برای گازها حجمی (مولی) می‌باشد.

سوال: (غلظت یک محلول مايع 10 ppm است)، این جمله چه مفهومی دارد؟

پاسخ:
این جمله می‌تواند مفاهیم زیر را داشته باشد:

1- در 10 کیلوگرم از محلول یا خشخاش 10 کیلوگرم حل شونده وجود دارد.
2- در 10 گرم از محلول 1 گرم حل شونده وجود دارد.
3- در 10 پوند حل شونده 10 گرم حل شونده وجود دارد.

سوال: (غلظت co در هوا 0.1 ppm است)، این جمله چه مفهومی می‌تواند داشته باشد؟

پاسخ:
می‌تواند مفاهیم زیر را داشته باشد:

1- در 106 متر مکعب co هوای 10 هوا 0.1 متر مکعب موجود دارد.
2- در 106 سانتیمتر مکعب co هوای 10 هوا 1 سانتیمتر مکعب موجود دارد.
3- در 106 ین co هوای 10 هوا 0.1 ین مکعب موجود دارد.
4- و چون در مورد غیر این آلیاژ صحتی نشده می‌توان گفت: co 0.1g مولی، co 0.1g مولی 106g مولی وجود دارد.
5- در co 0.1lb مولی، co 0.1lb مولی 106lb مولی وجود دارد.

مثال: چنانچه در پساب یک کارخانه غلظت یک ماده سمی ppm باشد و روزانه ۵۰ هزار کیلوگرم از این پساب وارد رودخانه شود، محاسبه کنید که در هر روز چند پوند از این ماده وارد رودخانه می‌شود؟

پساب A ماده سمی B

\[C_B = 0.01ppm \]
\[m_A = 500000 \text{ kg day} \]

\[10^6 Kg A = 0.01Kg B \]
\[500000 Kg A = 5 \times 10^{-3} Kg B \]

راه حل اول:
راه حل دوم:
مبنا محاسبات بر پایه ی یک روز

\[C = \frac{0.01Kg \times B}{10^6 Kg \times A} \times \frac{500000Kg \times A}{1lbm} = 0.01lbm \]

مثال: محصول \(HNO_3 \) در آب چگالی 1.1 در دمای 250 درجه سانتی‌گراد را در نظر بگیرید. غلظت
برای \(15 \frac{gr}{Lit} \) می‌باشد. مطلوب است:
الف: جزء مولی \(HNO_3 \) در محلول
ب: مقدار \(ppm \) بر حسب \(HNO_3 \) در محلول

\(Sp.gr = 1.1 \)
\(M_{H_2O} = 18 \)
\(M_{HNO_3} = 63 \)

\[C = 15 \frac{gr}{Lit} \]

\[15 \frac{gr}{Lit_{solution}} \times \frac{1m^3_{solution}}{1.1 \times 1000Kg_{solution}} \times \frac{1000Lit}{1m^3} = 15 \frac{gr_{solute}}{101} \frac{gr_{solute}}{gr_{solution}} = 13.63 \frac{gr_{solute}}{gr_{solution}} \]

\[\Rightarrow 1000gr_{solution} \left\{ \begin{array}{l}
13.63gr_{HNO_3} \\
(1000 - 13.63)gr_{H_2O}
\end{array} \right. \]

\[\hat{x}_{HNO_3} = \frac{m_{HNO_3}}{m_{H_2O} + m_{HNO_3}} = \frac{13.63}{1000 - 13.63 + 13.63} = 0.0393 \]

\[ppm: \frac{15gr_{solute}}{1Lit_{solution}} \times \frac{1m^3_{solution}}{1.1 \times 1000Kg_{solution}} \times \frac{1000Lit}{1m^3} \times \frac{1Kg_{solute}}{1000gr} \times 10^6 = 13636.36 \]
مبدا

خواص شدید - \textbf{IntenSive} \quad \text{به مقدار جرم بستگی ندارد.}

خواص ترمودینامیکی

خواص مقداری - \textbf{ExtrenSive} \quad \text{به مقدار جرم بستگی دارد.}

مطالعه روی خواص شدیدی به جرم بستگی ندارد و می‌توان آزمایشات با محاسبات را روی هر مقداری از ماده که واحدهاً بر اساس انجام داد.

توجه می‌باشد که دو عبارت از مقداری از چنین تراکم‌هایی که روی آن مطالعات خود را انجام می‌دهند و نتایجی را که از آن بدست می‌آورند می‌توان برای کل چنین با سیستم مورد استفاده قرار داد. در واقع مینا عبارت است از مرحله‌ای که برای انجام محاسبات مربوط به هر مسئله انتخاب می‌شود و انتخاب درست آن غالباً نسبت به آسانی و درستی حل مسئله می‌شود.

نکته 1: مبانی انتخاب شده را با پایه در شروع حل مسئله ذکر کرد تا همواره اساس واقعی محاسبات مدتظر باشد و هر شخص دیگری نیز که مسئله را مطالعه می‌کند مبانی آن را به سادگی در پایه.

نکته 2: امکان‌داده که نیاز داشته باشیم مبانی مسئله را در مبانی راه مسئله عوض کنیم و با اینکه از مبانی‌های تور در تو اسفاده کنیم در این صورت هم با ظنی مبانی جدید را فیک کنیم.

نکته 3: معنی‌های اعدادی همچون 100، 1000 که ساده‌تر هستند را به عنوان مبانی در نظر گیریم.

نکته 4: در برخی موارد (معنی‌های واقعی که از دی‌های استفاده می‌کنیم) بهتر است مبانی را واحد زمان در نظر بگیریم.

نکته 5: توافقات مناسب در انتخاب مبانی صحیح از طریق ممارست و تمرین حاصل خواهد شد.
مثال: اگر سوختی مشکل از 80% منان و 20% اتان داشته باشیم، نسبت تعداد اتم های کربن به تعداد اتم های هیدروژن را در این سوخت محاسبه کنید؟

\[
\begin{align*}
80\% \ CH_4 \\
20\% \ C_2H_6 \\
\end{align*}
\]

\[
\begin{align*}
\text{تعداد اتم های } C/\text{تعداد اتم های } H = ?
\end{align*}
\]

Base : 100gmole of Mix

<table>
<thead>
<tr>
<th>80gmole CH₄</th>
<th>20gmole C₂H₆</th>
</tr>
</thead>
</table>

80gmole CH₄ :

\[
\begin{align*}
\text{C} &= 80 \times 1 = 80 \text{gmole} \\
\text{H} &= 4 \times 80 = 320 \text{gmole}
\end{align*}
\]

20gmole C₂H₆ :

\[
\begin{align*}
\text{C} &= 2 \times 20 = 40 \text{gmole} \\
\text{H} &= 6 \times 20 = 120 \text{gmole}
\end{align*}
\]

تعداد کل اتم های C در مخلوط = 80 + 20 = 120gmole\times\frac{6.02\times10^{23}}{1gmole}

تعداد کل اتم های H در مخلوط = 320 + 120 = 440gmole\times\frac{6.02\times10^{23}}{1gmole}

\[
\begin{align*}
\text{نسبت مول های } C/\text{نسبت تعداد اتم } C = \frac{120}{440} = \frac{3}{11}
\end{align*}
\]
مثال: جانچه یک گاز شامل 30% مونوکسید کربن، 40% متان، 10% هیدروژن و 20% دی اکسید کربن باشد وزن مولکولی این گاز را محاسبه کنید.

آنالیز

\[
\begin{align*}
30\% & \text{ CO} \\
40\% & \text{ CH}_4 \\
10\% & \text{ H}_2 \\
20\% & \text{ CO}_2 \\
\end{align*}
\]

از ضمایم آنالیز پایینی کتاب هیمال بلاو

\[
\begin{align*}
\text{CO} & = 28 \\
\text{CH}_4 & = 16 \\
\text{H}_2 & = 2 \\
\text{CO}_2 & = 44 \\
\end{align*}
\]

\[
\begin{align*}
30\text{gmole CO} & = 30 \times 28 \text{gr CO} \\
40\text{gmole CH}_4 & = 40 \times 16 \text{gr CH}_4 \\
10\text{gmole H}_2 & = 10 \times 2 \text{gr H}_2 \\
20\text{gmole CO}_2 & = 20 \times 44 \text{gr CO}_2 \\
\end{align*}
\]

\[
M = \frac{m}{n} = \frac{30 \times 28 + 40 \times 16 + 10 \times 2 + 20 \times 44}{100} = 23.8 \frac{\text{gr}}{\text{gmole}} \left(\frac{\text{kg}}{\text{kmole}} \right) \left(\frac{\text{lbm}}{\text{lbmole}} \right)
\]

مثال: با فرض اینکه آنالیز داده شده در مثال قبل وزنی باشد مسئله را حل کنید.

راه حل اول:

\[
\begin{align*}
30\text{gr CO} & = \frac{30}{28} \text{gmole CO} \\
40\text{gr CH}_4 & = \frac{40}{16} \text{gmole CH}_4 \\
10\text{gr H}_2 & = \frac{10}{2} \text{gmole H}_2 \\
20\text{gr CO}_2 & = \frac{20}{44} \text{gmole CO}_2 \\
\end{align*}
\]

\[
M = \frac{m}{n} = \frac{100\text{gr}}{\frac{30}{28} + \frac{40}{16} + \frac{10}{2} + \frac{20}{44}} = 11.08 \left(\frac{\text{gr}}{\text{gmole}} \right) \left(\frac{\text{kg}}{\text{kmole}} \right) \left(\frac{\text{lbm}}{\text{lbmole}} \right)
\]
راه حل دوم:

تبدیل آنالیز جرمی به مولی و سپس حل مسئله:

\[
\begin{align*}
30 \text{gr CO} &= \frac{30}{28} \text{ gmole} \\
40 \text{gr } CH_4 &= \frac{40}{16} \text{ gmole} \\
10 \text{gr } H_2 &= \frac{10}{2} \text{ gmole} \\
20 \text{gr } CO_2 &= \frac{20}{44} \text{ gmole}
\end{align*}
\]

\[n_t = \frac{30}{28} + \frac{40}{16} + \frac{10}{2} + \frac{20}{44}\]

\[
\begin{align*}
% CO &= \frac{n_{CO}}{n_t} \times 100 = \frac{30}{28} \times 100 = 11.9\% \\
% CH_4 &= \frac{n_{CH_4}}{n_t} \times 100 = \frac{40}{16} \times 100 = 27.7\% \\
% H_2 &= \frac{n_{H_2}}{n_t} \times 100 = \frac{10}{2} \times 100 = 55.4\% \\
% CO_2 &= \frac{n_{CO_2}}{n_t} \times 100 = \frac{20}{44} \times 100 = 5\%
\end{align*}
\]

گرفنن مبانی دوم برای محاسبه \(M \) از آنالیز مولی:

\[
\begin{align*}
11.9 \text{ gmole CO} &= 11.9 \times 28 \text{ gr CO} \\
27.7 \text{ gmole } CH_4 &= 27.7 \times 16 \text{ gr } CH_4 \\
55.4 \text{ gmole } H_2 &= 55.4 \times 2 \text{ gr } H_2 \\
5 \text{ gmole } CO_2 &= 5 \times 44 \text{ gr } CO_2
\end{align*}
\]

\[M = \frac{m}{n} = \frac{11.9 \times 28 + 27.7 \times 16 + 55.4 \times 2 + 5 \times 44}{100} = 11.07\]
مثال: نمونه ای از ذغال سنگ دارای مواد زیر می‌باشد:

<table>
<thead>
<tr>
<th>ماده</th>
<th>گوگرد</th>
<th>آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد (برنی)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>اکسیژن</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>خاکستر</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

با قائم‌اندازه‌های کربن و هیدروژن با نسبت اتمی

\[
\frac{C}{H} = 9
\]

می‌باشد. مطلوب است محاسبه در سد مواد موجود در این ذغال سنگ به طور کامل و بدون احتساب آب و خاکستر.

حل:

Base: 100Kg Coal

\[
2 + 1 + 6 + 11 + 3 = 23 \Rightarrow 100 - 23 = 77 \quad (C_9H)
\]

\[
m_c + m_H = W
\]

Base: 10lbmole of C + H

\[
\frac{n_H}{n_C} = 9 \Rightarrow n_H = 9n_C \quad \Rightarrow n_H + n_C = 10 \quad \Rightarrow 9n_C + n_C = 10
\]

\[
n_c = 1lbmole = 12Kg \quad C
\]

\[
n_H = 9kmole = 9Kg \quad H
\]

\[
\frac{m_c}{m_H} = \frac{12}{9} \Rightarrow \begin{cases} m_c + m_H = 77 \\ \frac{m_c}{m_H} = \frac{12}{9} \end{cases} \quad \Rightarrow m_c = 44Kg, m_H = 33Kg
\]

S:

\[
\frac{2}{86} \times 100 = 2.32
\]

N:

\[
\frac{1}{86} \times 100 = 1.17
\]

O:

\[
\frac{6}{86} \times 100 = 7
\]

H:

\[
\frac{33}{86} \times 100 = 38.39
\]

C:

\[
\frac{44}{86} \times 100 = 51.17
\]
Temperature – دما

دما عبارت است از معیاری از انرژی حرارتی مربوط به حرکات اتلافی مولکول‌های یک جسم در حالت تعادل حرارتی.

به عبارت دیگر دما احساس پیشرفت در مورد سرعت حرکت ذرات یک جسم، و هر چقدر سرعت حرکت ذرات بیشتر، باشد احساس دمای بیشتری را خواهیم کرد.

نکته 1: دما با گرمای متفاوت است و گرمای از جنس انرژی است و توانایی انجماد کار را دارد در حالیکه دما اینگونه نیست.

\[\Delta^\circ C = 1.8 \Delta^\circ F \]

\[\Rightarrow \frac{\Delta^\circ C}{1.8 \Delta^\circ F} = 1 \iff \Delta K = 1.8 \Delta^\circ R \quad \frac{\Delta K}{1.8 \Delta^\circ R} = 1 \]

\[
\begin{align*}
^\circ F &= 1.8^\circ C + 32 \\
K &= 273 +^\circ C \\
^\circ R &= 460 +^\circ F
\end{align*}
\]

pressure – فشار

فشار نوعی تنش است.

انواع تنش عبارتند از:

1- برشی
2- کششی
3- فشاری
فرض در سوالات:

\[P = \frac{F}{A} = \frac{m.g}{A} = \rho V.g = \frac{\rho A h.g}{A} = \rho.g.h \]

واحد های فشار:

فشار اتمسفر استاندارد:

\[76cmHg = 760mmHg = 29.92inHg \]

\[= 33.91ft \quad H_2O \]

\[= 1atm \]

\[= 1.013 \times 10^5 \frac{n}{m^2} (pa) \]

\[= 14.7 \frac{lbf}{in^2} (psi) \]

\[P = \rho.g.h \Rightarrow \frac {lbf}{in} \times \frac {in}{sec^2} \times \frac {in}{lbf} = 14.7 \frac {lbf}{in^2} \]

سوال: چند psi است؟

\[2atm \times \frac {14.7 psi}{1atm} = (2 \times 14.7) psi = 29.4 psi \]

نکته: فشار اتمسفر استاندارد عبارت است از فشار هوا در سطح دریا و دما 0 دیجره سانتی‌گراد که اعداد آن در فوق داده شده است، ولی وقتی حسیت فشار هوا در حالت کلی می‌کنیم منظور فشار محيطي است که در آن قرار گرفته که بايد توسط دستگاه ها اندازه گیری شود.

www.ShimiPedia.ir
نکته ۲: چون دستگاه اندازه‌گیری فشار هوا بارومتر نام دارد لذا اگر بگوییم فشار بارومتر منظورمان همان فشار هوا است.

نکته ۳: اگر در مسئله‌ای فشار هوا لازم باشد و لی داده نشده باشد منظور این است که آن را فشار هوا استاندارد یعنی یک انضمام، یا هر کدام از اعداد دیگری که داده شده در نظر می‌گیریم.

مثال: اگر فشار هوا در یک لوله مرتفع ۴۰mmHg باشد، معادل inH_{2}O چقدر است؟

و اگر فشار هوا در یک لوله مرتفع ۱Kpa باشد، معادل Pa چقدر است؟

| ۴۰mmHg | ۱۲in | ۷۶۰mmHg | ۱ft | ۴۰×۳۳.۹۱×۱۲ | ۷۶۰ | ۲۱.۴۲inH_{2}O |
| ۴۰mmHg | ۱.۰۱۳×۱۰^{5} Pa | ۷۶۰mmHg | ۱Kpa | ۴۰×۱.۰۱۳×۱۰^{5} | ۷۶۰×۱۰^{3} | ۵.۳۳Kpa |
فشار نسبی (Prel) و فشار مطلق (gage) (absolute) به خلاء سنجیده می‌شود.

Pabs: نسبت به فشار هوا سنجیده می‌شود.

Prel: نسبت به خلاء سنجیده می‌شود.

شکل ۱

شکل ۲

شکل ۳

شکل ۴
در شکل ۳ داریم:

\[
P_{N_2} A + \rho gh_1 A = P_{air} A + \rho gh A + \rho gh_1 A
\]
\[
\Rightarrow P_{N_2} = P_{air} + P_{rel N_2}
\]

(1)

در شکل ۴ داریم:

\[
P_{N_2} h + \rho gh_2 A = \rho gh_2 A + \rho gh_1 A
\]
\[
\Rightarrow P_{N_2} = P_{abs N_2}
\]

(2)

ارتباط بین فشار مطلق و فشار نسبی:

(1) و (2) \Rightarrow P_{abs} = P_{air} + P_{rel}

نکته ۱: در محاسبات همواره با شکل \\nنکته ۲: در صورتی که خلاف آن گفته نشده باشد فشار را همواره مطلق می‌گوییم.

نکته ۳: مواردی مثل عبارت زیر می‌را به این مسئله هدایت می‌کند که فشار نسبی است:
- در سیستم مهندسی عبارت نشان دهنده فشار نسبی و Psia نشان دهنده فشار مطلق است.
- عبارت با (yalter از فشار جو) (پایینتر از فشار جو) (تحت مکش) (فشار خلاء) (نسبت به فشار جو) همگی نشان دهنده فشار نسبی است.
- نشان دهنده فشار نسبی منفی است.

نکته ۴: نشان دهنده فشار نسبی منفی است.
مثال: هوا در یک مکش تحت مکش معادل یا آب جریان دارد. فشار هوا می‌باشد فشار مطلق هوا داخل لوله را بر حسب inHg بدست آورید؟

\[
P_{rel} = -4\text{cm}_H_2O
\]

\[
P_{air} = 730\text{mmHg}
\]

\[
P_{abs} = ?\text{inHg}
\]

\[
P_{abs} = P_{air} + P_{rel}
\]

\[
P_{abs} = 730\text{mmHg} \times \frac{1\text{cm}}{10\text{mm}} + \frac{-4\text{cm}_H_2O}{2.54\text{cm}} \times \frac{1\text{in}}{12\text{in}} = 29.92\text{inHg}
\]

\[
\Rightarrow P_{abs} = 28.62\text{inHg}
\]
برق‌ری معادل در لوله‌های حاوی سیالات

با توجه به شکل فوق داریم:

\[
\rho_1 A_1 + \rho_4 g h_4 A_1 + \rho_3 g h_3 A_1 + \rho_2 g h'_2 A_1 = P_1 A_1 \\
\rho_2 A_2 + \rho_1 g h_1 A_2 + \rho_2 g h_2 A_2 + \rho_2 g h'_2 A_2 = P_2 A_2
\]

تذکر 1: مثال آریفس از کتاب هیمل بلدو در این زمینه مطالعه شود.
تذکر 2: خواص فیزیکی و شیمیایی محلول‌ها و ترکیبات را با ایده‌کن انداز کتاب‌های به نام هندبوک استخراج نمود.
محاسبات استوکیومتری

همانگونه که می‌دانیم در تنشت معادلات شیمیایی باید جهت ارضای قانون یافعی ماده یک یک سری ضرایب را بکاربرد که این ضرایب را ضرایب استوکیومتری می‌نامیم.

\[CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \]

انجام محاسبات گوناگون در حل بخشی مسائل با توجه به ضرایب استوکیومتری را محاسبات استوکیومتری می‌نامند.

نکته: جانبه صحت خاصی به میان نیاید همواره فرض بر این است که مواد اولیه (و اکنون شده‌ها) به نسبت استوکیومتری با هم ترکیب شده‌اند و واکنش هم صدای ضریب انجام شده و در خروجی ها فقط محصول وجود دارد. اما این یک حالت باید آن است و عملای در صنع اینگونه یکت و یکی از مواد به عنوان محدود کنندگی و یا بقیه اضافه می‌باشد.

\[\text{input} \hspace{2cm} \text{products} \]
\[\text{reactor} \]
\[\begin{array}{c}
\text{(react tan ts)} \\
A \\
\end{array} \hspace{2cm} \begin{array}{c}
\text{(output)} \\
C, D \\
\end{array} \]
\[A + B \leftrightarrow C + D \]

عامل محدود کنندگی: واکنش دهنده ای که زودتر از سایر واکنش دهنده‌ها مصرف شده و باعث اتمام واکنش می‌شود.

عامل اضافه: واکنش دهنده ای که بیشتر از نسبت استوکیومتری وارد شده و مقداری از آن بدون شرکت در واکنش باقی می‌ماند.

دلیل استفاده از عامل اضافه انجام بهتر واکنش و بالا بردن راندمان ان است.
درصد اضافه به صورت زیر محاسبه می‌شود:

\[
\% Excess = \frac{\text{مقدار اضافه}}{\text{مقدار کل}} \times 100
\]

مثال: به شکل زیر توجه کنید:

\[
3 \text{g mole CH}_4 \rightarrow \text{reactor} \rightarrow 0.5 \text{g mole CH}_4
\]

\[
\% Excess = \frac{8 - 6}{6} \times 100 \approx 33.33\%
\]

مقدار اضافه را غالباً از تفاصل مقدار ورودی و مقدار مورد نیاز (لازم) پرای ترکیب با عامل محدود کننده بدست می‌آورند.

تذکر ۱: مقدار می‌تواند بر حسب جرم یا مول یا حجم در رابطهٔ فوق بکار روند (مهم).

تذکر ۲: حتی اگر فقط قسمتی از عامل محدود کننده وارد واکنش شود، مقدار لازم را بر مبنای مصرف کامل عامل محدود کننده محاسبه می‌کنیم.

www.ShimiPedia.ir
درجه تکمیل واکنش:
درصدی از عامل محدود کننده که در واکنش شرکت می کند را در جه تکمیل واکنش می گوییم.

مقداری از عامل محدود کننده که در واکنش شرکت کرده است.

درجه تکمیل واکنش

مقدار عامل محدود کننده در ورودی

در مثال قبل می توان درجه تکمیل واکنش را به صورت زیر محاسبه نمود:

\[
\text{درجه تکمیل} = \frac{2.5}{3} \times 100 \approx 83.33\%
\]

تذکر: در صورتی که همه ی مواد به نسبت استوکومتری بکار روند درجه تکمیل نسبت به هر کدام از اجرا که حساب شود در پاسخ تفاوتی نخواهد داشت.

سه تعریف دیگر برای سنگینی کمی واکنش ها به کار می روند که عبارتند از:

1- میزان تبدیل (Conversion)
2- تولید انتخابی (Selectivity)
3- پاره (Yield)

1- میزان تبدیل:
عبارت است از جزئی از خروجیکه یا جزئی از یک ماده موجود در خروجیکه به محصول تبدیل می شود. (خروجک مورد نظر و محصول مورد نظر باعث دمای مشخص شود).

در مثال قبل داریم:
مول هایی از اکسیدزن که در واکنش شرکت کرده اند:

\[
\text{مول های دی اکسیدکردن تولیدی} = \frac{\text{میزان تبدیل اکسیدزن در تبدیل به دی اکسید کردن}}{\text{مول فرمول از اکسیدکردن}}
\]
2- تولید انتخابی
عبارت است از نسبت تعداد مول های یک محصول معین (معمولاً محصول مطلوب) به تعداد مول های یک محصول دیگر (معمولاً محصول تا مطلوب) که در یک دسته و اکتش ایجاد می‌شود.

3- بازده
در مورد یک ترکیب شونده و یک محصول عبارت است از جرم یا تعداد مول محصول نهایی تقسیم بر جرم یا تعداد مول ترکیب شونده اولیه (اگر بیش از یک محصول و ترکیب شونده وجود داشته باشد ترکیب شونده و محصولی که بازده بر اساس ان محسوبه می‌گردد بایستی کاملاً مشخص باشد.

تذکر مهم:
با توجه به خاطر داشت که معادله شیمیایی گویای مکانیزم، سرعت و میزان پیشرفت واکنش نمی‌باشد. مثل‌الایک قطعه ذغال در دماه معمولی تغییری نمی‌کند ولی در دمای بالا به سرعت می‌سوزد. معادله شیمیایی فقط مقادیر استوکومتری لازم برای انجام واکنش و محصول این فعل و انفعال را بدست می‌دهد.
مثال: خوردگی لوله‌های دیگ بخار در اثر اکسیژن را می‌توان با استفاده از سیویکتی سدیم کاهش داد.

سیویکتی سدیم اکسیژن موجود در ورودی به دیگ بخار را به موجب واکنش زیر حذف می‌کند:

\[2Na_2SO_4 + O_2 \rightarrow 2Na_2SO_4\]

به لحاظ تئوری چند پوند سولفات سدیم برای حذف اکسیژن موجود در 8,330,000 پوند آب لازم است. در صورتیکه اکسیژن محلول در آب 10ppm بوده و بخواهیم 35 سولفات سدیم نیز در آب داشته باشیم. (126: 32 + Na_2SO_3 : 35)

حل:

%Exess = \[\frac{\text{مقدار مورد نیاز} - \text{مقدار ورودی}}{\text{مقدار مورد نیاز}}\] = 0.35

این مقدار با عدد یک جمع شده و در محاسبات لحاظ می‌گردد.

چرا؟

زیرا این مقدار عبارت از مقدار ماده ایست که اضافه بر واکنش وارد شده و با مقدار 100\% آنچه که مصرف شده جمع می‌شود.

با طرفین وسطین رابطه فوق به این مفهوم می‌رسیم:

\[\text{مقدار مورد نیاز} \times 1.35 = \text{مقدار مورد نیاز} + 0.35\text{مقدار مورد نیاز} = \text{مقدار ورودی}\]

روش اول:

\[m_{{Na_2SO_3}} = \frac{10\text{lbm } O_2}{10^6 \text{lbm } H_2O} \times \frac{8,330,000 \text{lbm } H_2O}{2\times126\text{lbm } Na_2SO_3} \times 1.35\]

\[= 885.583\text{lbm}\]

روش دوم:

\[m_{{Na_2SO_4}} = \frac{2\times126\text{lbm } Na_2SO_4}{32\text{lbm } O_2} \times \frac{10\text{lbm } O_2}{10^6 \text{lbm } H_2O} \times \frac{8,330,000 \text{lbm } H_2O}{1.35}\]

\[= 885.583\text{lbm}\]
مثال: آنالیز یک نوع سنگ آهک به قرار زیر است:

<table>
<thead>
<tr>
<th></th>
<th>$CaCO_3$</th>
<th>$MgCO_3$</th>
<th>$else(insolbib)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.89%</td>
<td>5.4%</td>
<td>1.7%</td>
<td></td>
</tr>
</tbody>
</table>

الف: جند بوند اکسید کلسیم می توان از 5 تن سنگ آهک بدست آورد؟
ب: جند بوند CO_2 می توان به ازای هر یوند سنگ آهک بدست آورد؟
ج: جند بوند سنگ آهک برای تولید یک تن آهک لازم است؟

تذکر: در سیستم مهندسی هر تن معادل 2000 یوند است.

$CaCO_3 = 100$
$MgCO_3 = 84$
$CaO = 40$
$CO_2 = 44$

واکنش های تولید آهک:

$CaCO_3 \rightarrow CaO + CO_2$
$MgCO_3 \rightarrow MgO + CO_2$

حل:

الف: 1. توزیع سنگ آهک به کلسیم و آکسید کلسیم

\[
\frac{56 \text{ lbm} \ CaO}{100 \text{ lbm} \ CaCO_3} \times \frac{92.89 \text{ lbm} \ CaCO_3}{100 \text{ lbm} \ lim \ stone} \times 5 \times 2000 \text{ lbm} \ lim \ stone
\]

\[
= 5501.8 \text{ lbm} \ CaO
\]

ب: مقدار ذیل اکسید کربنیون تولیدی برای مجموع ذیل اکسید کربنیون تولید شده از 2 واکنش می باشد:

\[
CO_2 = \frac{44 \text{ lbm} \ CO_2}{100 \text{ lbm} \ CaCO_3} \times \frac{92.89 \text{ lbm} \ CaCO_3}{100 \text{ lbm} \ lim \ stone} \times \frac{1 \text{ lbm} \ lim \ stone}{\text{lbm} \ stone}
\]

\[
= 0.44 \text{ lbm}
\]

ج: 1. آهک

\[
\frac{1 \text{ lbm} \ lim \ stone}{0.56 \text{ lbm}} \times \frac{2000 \text{ lbm}}{0.56} = 3571 \text{ lbm}
\]

سنگ آهک

www.ShimiPedia.ir
مثال: فلز آنتيمون در اثر حرارت دادن به گرد نرم سولفور آنتيمون با آهن قراضه تهیه می‌شود، واکنش انجامشده به قرار زیر است:

\[\text{Sb}_2\text{S}_3 + 3\text{Fe} \rightarrow 2\text{Sb} + 3\text{FeS} \]

فرض کنید ۲ کیلوگرم سولفور آنتی‌موانا با ۰.۲۵ کیلوگرم آهن حرارت داده و کیلوگرم فلز آنتی‌موانا

\[\text{Sb}_2\text{S}_3 : 339.7 \]
\[\text{Fe} : 55.8 \]
\[\text{Sb} : 121.8 \]
\[\text{FeS} : 87.9 \]

حل:

\[\frac{0.6\text{kg}}{\text{Sb}_2\text{S}_3} \]
\[\frac{0.25\text{kg}}{\text{Fe}} \]

الف:

\[n_{\text{Sb}_2\text{S}_3} = \frac{m_{\text{Sb}_2\text{S}_3}}{M_{\text{Sb}_2\text{S}_3}} = \frac{600\text{gr}}{339.7} = \frac{1.76\text{gmole}}{1} = 1.76\text{gmole} \]

\[n_{\text{Fe}} = \frac{m_{\text{Fe}}}{M_{\text{Fe}}} = \frac{250\text{gr}}{55.8} = \frac{4.48\text{gmole}}{3} = 1.49\text{gmole} \]

بسیاری از آهن عامل محدود کننده است.

ب:

\[\%\text{Exess} = \left(\frac{\text{مقدار مورد نیاز} - \text{مقدار ورودی}}{\text{مقدار مورد نیاز}} \right) \times 100 \]

\[\Rightarrow \%\text{Exess} = \left(\frac{600\text{gr} - 339.7\text{gr} \times \frac{\text{Sb}_2\text{S}_3}{\text{Sb}_2\text{S}_3} \times 250\text{gr} \text{Fe}}{3 \times 55.8} \right) \times 100 = 18\% \]
مقداری از عامل محدود کننده که در واکنش شرکت کرده است:

$$\frac{3 \times 55.8 \text{gr} \ Fe}{2 \times 121.8 \text{gr} \ Sb} \times \frac{200 \text{gr} \ Sb}{250 \text{gr}} \times 100 = 54.9\%$$

تمرین: در شکل زیر آنالیز گازهای حاصل از احتراق خروجی از دودکش را حساب کنید.

درجه تکمیل واکنش در محفظه ی سوم 80% می باشد.
فصل دوم:
مواد فیزیکی
مفهوم موازن‌های ماده:
مفهوم موازن‌های ماده چنین نیست جز به کار بستن قانون بقای جرم.

قانون بقای جرم:
مجموع جرم موجود در جهان مقداری است ثابت.

سیستم:
حجمی از فضا که مطالعات مان را روی آن متمرکز می‌کنیم را سیستم می‌نامیم.

محیط:
هر آنچه در جهان به جز سیستم را محیط می‌نامیم.

مرز سیستم:
خطوطی فرضی که سیستم را از محیط جدا کرده است.

باز: سیستمی که جرم مرز آن را قطع می‌کند.

انواع سیستم

بسته: سیستمی که جرم مرز آن را قطع نمی‌کند.

سیستم پایدار: سیستمی که متغیرهای آن با گذشت زمان ثابت ماند.

سیستم ناپایدار: سیستمی که متغیرهای آن با گذشت زمان تغییر کند.

بدون واکنش

دسته‌بندی کلی مطالعات موازن‌های ماده:
همراه با واکنش
بررسی سیستم های بدون واکنش

به شکل زیر توجه کنید:

\[H_2O \]

حاوی 90% رطوبت

حاوی 80% رطوبت

مواد به سیستم برای ماده \(A \):

\[m_{A \ in} - m_{A \ out} = m_{accumulation} \]

برای مول هم می‌توان روابط را نوشت:

\[n_{A \ in} - n_{A \ out} = n_{A \ acc} \]

تذکر: اگر سیستم پایدار باشد \(n_{A \ acc} = 0 \) و \(m_{accumulation} = 0 \)

مواد به سیستم برای \(H_2O \):

\[m_{H_2O \ in} - m_{H_2O \ out} = m_{H_2O \ acc} \]

همچنین برای مول آب داریم:

\[n_{H_2O \ in} - n_{H_2O \ out} = n_{H_2O \ acc} \]

بررسی سیستم های همراه با واکنش

مواد به سیستم برای ماده \(A \):

\[m_{A \ in} - m_{A \ out} + m_{A \ generation} - m_{A \ consumption} = m_{A \ acc} \]

www.ShimiPedia.ir
تذکر: منظور از $m_{\text{A consumption}}$ جرم اطلاعیه یا مصرفی A، و منظور از $m_{\text{A generation}}$ جرم تولیدی و به طور کلی می‌توان نوشت:

$$\text{in} - \text{out} + \text{gen} - \text{cons} = \text{acc}$$

برای مواد C و B نیز به همین ترتیب عمل می‌کنیم.

تذکر: در سیستم پایدار همواره $\text{acc}=0$ است. در این حالت، اگر نتایج سیستم را در حال حاضر نشان دهد، نشان از آن گرفته محاسبه کنید.

مثال: جنایت در زیر به دستورات NaOH و H_2O و NaOH خروجی وارد می‌کند و مخلوط کننده شونده جرم NaOH و H_2O خروجی را محاسبه کنید.

حل:

مواده خروجی سیستم برای ماده NaOH:

$$m_{\text{NaOH in}} - m_{\text{NaOH out}} + \#_{\text{NaOH gen}} - \#_{\text{NaOH cons}} = 0$$

$$m_{\text{NaOH out}} = m_{\text{NaOH in}} = 10 \times 0.8 + 15 \times 0.3 = 12.5 \text{kg}$$

مواده خروجی سیستم برای ماده H_2O:

$$m_{\text{H}_2\text{O in}} - m_{\text{H}_2\text{O out}} + m_{\text{H}_2\text{O gen}} - m_{\text{H}_2\text{O cons}} = 0$$

$$m_{\text{H}_2\text{O out}} = m_{\text{H}_2\text{O in}} = 10 \times 0.2 + 15 \times 0.7 = 12.5 \text{kg}$$
انواع فرآیند‌های شیمیایی در صنعت:

پیوسته: مواد اولیه دائمی وارد شده و محصولات هم دائمی خارج می‌شوند. در این نوع از فرآیند مواد ورودی و خروجی به صورت دیب بیان می‌شوند.

نیپوسته: مواد اولیه را وارد می‌کنیم و صفر می‌کنیم تا محصول تولید شود. سپس باقیمانده‌ها را از سیستم خارج می‌کنیم.

نیمه پیوسته: مواد ضمن انجام فرآیند وارد می‌شوند اما از سیستم خارج نمی‌شوند بنابراین چرخ در سیستم تجمع می‌کند و محصول وقتی خارج می‌شود که فرآیند تمام شده باشد.

به سلسله مثال‌های زیر توجه کنید:

مثال ۱: در شکل زیر جرم کربن و اکسیژن و جرم کل خروجی را بیا کنید.

حل:

موادی حول سیستم برا ی ماده C:

\[m_{C_{in}} - m_{C_{out}} + m_{C_{(gen-cons)}} = 0 \]

\[\Rightarrow m_{C_{out}} = m_{C_{in}} = 2 \text{ Kg/sec} \]

به همین صورت برای اکسیژن داریم:

\[m_{O_{2_{out}} = 3 \text{ Kg/sec}} \]

موادی جرم کلی:

\[m_{\text{total in}} - m_{\text{total out}} = 0 \]

\[\Rightarrow m_{\text{total out}} = 3 + 2 = 5 \text{ Kg/sec} \]
مثال ۲: در شکل مثال (۱) مول های خروجی کربن و اکسیژن و نیز تعداد مول کل خروجی را پیدا کنید.

حل:
مواد حاوی حول سیستم برای مول های کربن:

\[
\dot{n}_{C_{in}} - n_{C_{out}} + n_{C_{gen}} - n_{C_{cons}} = 0
\]

\[
\Rightarrow \frac{2000}{12} - \dot{n}_{C_{out}} = 0 \quad \Rightarrow \dot{n}_{C_{out}} = 166.67 \text{ gmole/sec}
\]

مواد حاوی حول سیستم برای مول های اکسیژن نیز به همان صورت خواهد بود:

\[
\dot{n}_{O_2_{out}} = \dot{n}_{O_2_{in}} = \frac{3000}{32} = 93.75 \text{ gmole/sec}
\]

کل مول های خروجی به صورت زیر محاسبه می‌گردد:

\[
\dot{n}_{total_{in}} = \dot{n}_{total_{out}} = 166.67 + 93.75 = 260.42 \text{ gmole/sec}
\]

مثال ۳: در شکل زیر جرم خروجی (بر حسب کیلوگرم) را برای اجزا و نیز برای کل مواد خروجی حساب کنید.

\[
\begin{align*}
C \overset{2 \text{ kg/sec}}{\rightarrow} C + O_2 \overset{3 \text{ kg/sec}}{\rightarrow} CO_2
\end{align*}
\]
حل:
وقتی واکنش شیمیایی انجام می‌شود ابتدا باید واکنش به لحاظ کمی شناسایی شود.

\[
n_C = \frac{2000}{12} = 166.67 \Rightarrow \frac{166.67}{1} = 166.67
\]

\[
n_{O_2} = \frac{3000}{32} = 93.75 \Rightarrow \frac{93.75}{1} = 93.75
\]

پس ماده محدود کننده اکسیژن خواهد بود.

\[
C_{cons} = 3000 \text{gr} \cdot O_2 \times \frac{1 \text{gmole} \cdot O_2}{16 \text{gr} \cdot O_2} \times \frac{12 \text{gr} \cdot C}{1 \text{gmole} \cdot C} = 1125 \text{gr}
\]

\[
CO_{2 \ gen} = 3000 \text{gr} \cdot O_2 \times \frac{1 \text{gmole} \cdot O_2}{16 \text{gr} \cdot O_2} \times \frac{44 \text{gr} \cdot C}{1 \text{gmole} \cdot C} = 4125 \text{gr}
\]

موازنده حول سیستم برای ماده کربن:

\[
n_{O_2} = \frac{3000}{32} = 93.75 \Rightarrow \frac{93.75}{1} = 93.75
\]

موازنده حول سیستم برای ماده اکسیژن:

\[
\dot{m}_{O_{in}} - \dot{m}_{O_{out}} + \dot{m}_{O_{gen}} - \dot{m}_{O_{cons}} = 0
\]

\[
\Rightarrow 3 - \dot{m}_{O_{out}} + 0 - 3 = 0 \Rightarrow \dot{m}_{O_{out}} = 0 \text{ Kg sec}^{-1}
\]

موازنده حول سیستم برای ماده دی اکسیژن کربن:

\[
\dot{m}_{CO_{in}} - \dot{m}_{CO_{out}} + \dot{m}_{CO_{gen}} - \dot{m}_{CO_{cons}} = 0
\]

\[
\Rightarrow 0 - \dot{m}_{CO_{out}} + 4.125 - 0 = 0 \Rightarrow \dot{m}_{CO_{out}} = 4.125 \text{ Kg sec}^{-1}
\]
مثال ۴: در مثال (۳) تعداد مول های مواد ورودی و خروجی اجزاء و کل را در ورودی و خروجی محاسبه کنید.

gmole in & gmole out
\[\begin{array}{cc}
C & 166.67 \\
O_2 & 93.75 \\
CO_2 & 0 \\
\hline
total & 260.42 \\
\end{array} \]

\[\begin{align*}
\frac{785}{12} & = 72.91 \\
0 & = 0 \\
\frac{4125}{44} & = 93.75 \\
\end{align*} \]

حل:

\[\begin{align*}
C & = 166.67 \\
O_2 & = 93.75 \\
CO_2 & = 0 \\
total & = 260.42 \\
\end{align*} \]

مثال ۵: در مثال (۳) تعداد مول های عناصر ورودی و خروجی کل را محاسبه کنید.

gmole in & gmole out
\[\begin{array}{cc}
C & 166.67 \\
O & 93.75 \times 2 = 187.5 \\
\hline
total & 354.17 \\
\end{array} \]

\[\begin{align*}
\frac{785}{12} + 2 \times \frac{4125}{44} & = 166.67 \\
2 \times \frac{4125}{44} & = 187.5 \\
\end{align*} \]

نتایج مثال های فوق عبارتند از:

۱- در مواردی که واکنش اتفاق نیفتند هم چرم و هم مول های مواد در جزء و کل هم در ورودی و هم در خروجی برابرند.

۲- در مواردی که واکنش شیمیایی اتفاق می‌افتد بازهم جرم کل ورودی با جرم کل خروجی مساوی است ولی مواد در ورودی و خروجی نه مول و نه جرم مساوی ندارند.

۳- جنگل هوازی‌روی عناصر بسته شود حتی در مواردی که واکنش شیمیایی هم انجام شود تعداد مول عنصر ورودی و خروجی و نیز تعداد کل مول های ورودی با تعداد کل مول های خروجی یکی خواهد بود.
مثال: آگر ۲۰۰ پوند هوا و ۴۴ پوند کربن را در دمای ۶۰۰ درجه فارنهایت در راکتوری قرار دهیم و پس از احتراق کامل هیچ ماده ای در راکتور باقی بماند.

الف: چند پوند اکسیژن و چند پوند کربن خارج شده است؟

ب: چند مول کربن و چند مول اکسیژن وارد شده و چند مول از راکتور خارج شده است؟

ج: کل مول های ورودی و خروجی چه بوده است؟

حل:

پس کربن عامل محدود کندن است.

\[
\begin{align*}
\frac{n_c}{n_{O_2}} = 2 & \Rightarrow \frac{12}{2} = 2 \\
\frac{n_{O_2}}{2} = 1 & \Rightarrow \frac{\frac{300}{29} \times 0.21}{1} = 2.17
\end{align*}
\]

چون درجه تکمیل واکنش داده نشد، پس فرض بر این است که همه ی کربن ورودی مصرف می‌گردد.

الف:

موجز تابع سیستم برای ماده کربن:

\[
m_{C_{in}} - m_{C_{out}} + m_{C_{gen}} - m_{C_{cons}} = 0
\]

\[
24 - m_{C_{out}} + 0 - 24 = 0 \Rightarrow m_{C_{out}} = 0
\]

ب:

موجز تابع سیستم برای ماده اکسیژن:

\[
m_{O_2_{in}} - m_{O_2_{out}} + m_{O_2_{gen}} - m_{O_2_{cons}} = 0
\]

\[
\frac{300}{29} \times 0.21 \times 32 - m_{O_2_{out}} + 0 - 64 = 0 \Rightarrow m_{O_2_{out}} = 5.52 \text{ lbm}
\]
موازنه حول سیستم برای کل:

\[m_{total} = m_{O_{2, out}} + m_{CO_{2, out}} + m_{N_{2, out}} = 5.52 + 88 + \frac{300}{29} \times 0.79 \times 28 = 322.35\text{lbm} \]

عدد دقیق ۳۲۴ است (مساوی با جرم ورودی)
علت بدست نیامدن دقیق ۳۲۴:
۱- خطای ناشی از گرد کردن
۲- عدم لحاظ اعداد جرم مولکولی دقیق

\[n_{C_{in}} = \frac{m_{C_{in}}}{M_C} = \frac{24}{12} = 2\text{lbmole} \]

\[n_{O_{2, in}} = \frac{m_{O_{2, in}}}{M_{O_2}} = \frac{\frac{300}{29} \times 0.21 \times 32}{32} = 2.17\text{lbmole} \]

\[n_{C_{out}} = \frac{m_{C_{out}}}{M_C} = \frac{0}{12} = 0 \]

\[n_{O_{2, out}} = \frac{m_{O_{2, out}}}{M_{O_2}} = \frac{5.52}{32} = 0.17\text{lbmole} \]

\[n_{total\ in} = n_{C_{in}} + n_{air\ in} = \frac{24}{12} + \frac{300}{29} = 12.34\text{lbm} \]

\[n_{total\ out} = n_{O_{2, out}} + n_{CO_{2, out}} + n_{N_{2, out}} = \frac{m_{O_{2, out}}}{M_{O_2}} + \frac{m_{CO_{2, out}}}{M_{CO_2}} + \frac{m_{N_{2, out}}}{M_{N_2}} \]

\[\Rightarrow n_{total\ out} = \frac{5.52}{32} + \frac{88}{44} + \frac{\frac{300}{29} \times 0.79 \times 28}{28} = 10.34\text{lbmole} \]
برنامه ریزی برای تجزیه تحلیل مسائل موازنه مواد:

نکته 1: چانچه سیستم ناپیوسته باشد باز هم می توان با رسم جریان های فرضی مسائل موازنه مواد را همانند سیستم های پیوسته حل کرد.

نکته 2: در برقراری موازنی مواد که به فرآیند مسئله حول سیستم یا برای جزیی از سیستم به صورت مجهول یا عنصری موازنه نوشته می شود و امکان دارد دستگاه های n معادله، شود که در صورتیکه تعداد مجهولات و معادلات مستقل یکی باشد دستگاه قابل حل است و لی اگر تعداد مجهولات بیشتر از تعداد معادلات باشد مسئله غیر قابل حل است و بالعکس چنانچه تعداد معادلات بیشتر از تعداد مجهولات باشد از نظر ریاضی دستگاه بی شمار جواب دارد و در صورتیکه موارد مواد ما آن دسته از معادلاتی را که به نظر خودمان دقت بالاتری دارند انتخاب نموده و دستگاه را حل می کنیم و باقی معادلات اضافه را کنار می گذاشته.

صفحات 133 تا 140 کتاب دیودور هیمل بالو در این زمینه به دقت مطالعه گردید.

نکته 3: در صورتیکه خلاف موضوع گفته شوند فرآیند مورد مطالعه را پایدار (steady state) در نظر می گیریم حتی اگر تحول بصورت ناپیوسته نیز باشد (جراحی ورودی و خروجی نداشته باشید) پازه های مواد قادر به وارد شد که مواد اولیه وارد سیستم شده اند و از طریق دیگر آن نیز خارج شده اند.

(منظور این است که روند محاسبات در حالت پایدار چه سیستم باز و چه پیوسته نفوذی ندارد.)
سیستم های شامل زیر سیستم

در برخی موارد برای حل مسئله و به دست آوردن آنها لازم است یک سیستم بزرگر را به زیر سیستم های کوچکتر تقسیم کنیم و معادلات موازنه ماده را برای آنها بطور مستقل برقرار کنیم.

مثال زیر را در نظر بگیرید:

c\[F = 100 \]
\[0.2 \text{ KCl} \]
\[0.8 \text{ H}_2\text{O} \]

\[A = ? \]
\[W = ? \]

\[\text{KCl} \]
\[\text{H}_2\text{O} \]

\[0.33 \text{ KCl} \]
\[0.67 \text{ H}_2\text{O} \]

\[C = ? \]

\[0.5 \text{ KCl} \]
\[0.5 \text{ H}_2\text{O} \]

\[B = ? \]

\[0.95 \text{ KCl} \]
\[0.05 \text{ H}_2\text{O} \]

\[P = ? \]

جنگل به خواصی فقط برای کل سیستم موازنه برقرار کنیم بدیلی اینکه دارایی دو ماده هستم فقط خواصی توانسته دو معادله مستقل بتوانیم در حالی که مستقل هفت مجهول داریم. لذا مجدویی برای بیشتر از برقراری موازنه ماده حول زیر سیستم های همان شماره 1، 2 و 3 نیز استفاده کنیم و از بین آنها هفت معادله را انتخاب و مستقل را حل کنیم مثالاً می‌توان انتخاب زیر را برقرار نمود:

\[100 + C = A \]
\[0.2 \times 100 + 0.33 \times C = x_{\text{KCl}} \times A \]
\[A + (W + B) = 0 \]
\[x_{\text{KCl}} \times A - (0.5B + 0) = 0 \]
\[F - (P + W) = 0 \]
\[0.8F = W + 0.05P \]
\[x_{\text{KCl}} + x_{\text{H}_2\text{O}} = 1 \]

موازنه جرم حول سیستم 1:
\[\text{KCl} \]

 موازنه جرم حول سیستم 2:
\[\text{KCl} \]

 موازنه جرم حول کل سیستم:
\[\text{KCl} \]

موازنه حول کل سیستم برای آب:

برای بدست آوردن معادله هفتم می‌توان نوشت:
مسائل موازننه مواد با حل مستقیم:

به سپاسی گفته می‌شود که در آنها موازنه‌های مواد با یکدیگر می‌باشند و بدون توازن به روش های جبری قابل حل هستند.

بدلیل اهمیت فرا آیند احتراق و کاربرد زیاد آن در صنعت ابتدا به ذکر برخی تعاریف در این زمینه می‌پردازیم:

گاز دود کش (stack gas): تمام گازهای حاصل از احتراق با در نظر گرفتن بخار آب موجود در آنها را می‌گویند.

آنالیز اورسات (orsat): آنالیز گازهای حاصل از احتراق بدون در نظر گرفتن آب آنها.

هوای تنوری: مقداری از هوای که برای احتراق کامل پاییز وارد فرآیند شود مورد نیاز هم نامیده می‌شود.

هوای اضافه (اکسیژن اضافی): مقدار هوای (اکسیژن) مازاد بر آنچه جهت احتراق کامل مورد نیاز است.

نکته: حتی اگر عمل احتراق به طور ناقص انجام شود محاسبات هوای اضافه بر حسب کامل خواهد بود.
در شکل زیر واکنش کلی احتراق دیده می‌شود:

![Diagram showing mass and energy balance in a reaction](image)

واکنش احتراق کامل:

\[C_xH_y + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O \]

واکنش احتراق ناقص:

\[C_xH_y + (\frac{x}{2} + \frac{y}{4})O_2 \rightarrow xCO + \frac{y}{2}H_2O \]

مثال: اگر متن این با ۱۲٪ هوا اضافی به‌صورتی که آنالیز گاز‌های حاصل از احتراق را بدست آورید؟

\[CH_4 \rightarrow CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O\]

\[\begin{align*}
& CO_2 \\
& H_2O \\
& N_2, O_2
\end{align*} \]

محاسبه: یک گموالی از \(CH_4 \)}
موازنه ماده حول سیستم برای مول های ذی اکسید کربن:

\[n_{CO_2}^{in} - n_{CO_2}^{out} + n_{CO_2}^{gen} - n_{CO_2}^{cons} = 0 \]
\[\Rightarrow 0 - n_{CO_2}^{out} + n_{CO_2}^{gen} = 0 \quad \Rightarrow \quad n_{CO_2}^{out} = n_{CO_2}^{gen} = 1 \text{gmole} \]

موازنه ماده حول سیستم برای مول های آب:

\[n_{H_2O}^{in} - n_{H_2O}^{out} + n_{H_2O}^{gen} - n_{H_2O}^{cons} = 0 \]
\[\Rightarrow 0 - n_{H_2O}^{out} + n_{H_2O}^{gen} = 0 \quad \Rightarrow \quad n_{H_2O}^{out} = n_{H_2O}^{gen} = 2 \text{gmole} \]

موازنه ماده حول سیستم برای مول های نیترژن:

\[n_{N_2}^{in} - n_{N_2}^{out} + n_{N_2}^{gen} - n_{N_2}^{cons} = 0 \]
\[\Rightarrow \quad n_{N_2}^{out} = n_{N_2}^{in} = \frac{79}{21} \times n_{N_2}^{in} = \frac{79}{21} \times (2 \times 2.3) = 17.3 \text{gmole} \]

شاپد این سوال مطرح شود که چگونه مول ورودی نیترژن محاسبه می‌گردد:

پاسخ:
با توجه به این که ۱۲٪ هوا اضافی وارد سیستم می‌شود، مول مورد نیاز اکسیژن را در عدد ۲/۳ ضرب کرده تا مقدار اکسیژن ورودی به تعیین بکند. ۱۲٪ از مقدار نیترژن ورودی محاسبه گردد. با توجه به اینکه ضرب استوکومتری اکسیژن در واکنش ۲ است و نیز درصد نیترژن به اکسیژن ۲۱٪ به ۷۹٪ باشد، می‌گردد که برای مول ورودی نیترژن به طریق فوق محاسبه می‌گردد. عدد ۲/۳ مقدار مول ورودی اکسیژن است که به وقیت در عدد \(\frac{79}{21} \) ضرب می‌شود. مقدار نیترژن ورودی را به می‌دهد.

موازنه ماده حول سیستم برای مول های اکسیژن:

\[n_{O_2}^{in} - n_{O_2}^{out} + n_{O_2}^{gen} - n_{O_2}^{cons} = 0 \]
\[\Rightarrow 2 \times 2.3 - n_{O_2}^{out} + 0 - 2 = 0 \quad \Rightarrow \quad n_{O_2}^{out} = 2 \times 2.3 - 2 = 2.6 \text{gmole} \]

\[
\begin{align*}
\%CO_2 &= \frac{1}{1+2+17.3+2.6} \\
\%H_2O &= \frac{2}{1+2+17.3+2.6} \\
\%N_2 &= \frac{17.3}{1+2+17.3+2.6} \\
\%O_2 &= \frac{2.6}{1+2+17.3+2.6}
\end{align*}
\]
مثال: در مخلوطی ...کیلو گرم مخلوط اشباع $NaHCO_3$ در یک درجه فارنهایت وجود دارد. می‌خواهیم 60 کیلو گرم $NaHCO_3$ مخلوط را از مخلوط تهیه کنیم. مخلوط را تا چه دمایی باید سرد کنیم تا این اتفاق بیفتد؟

دمای $^\circ C$	$\frac{gr}{100grH_2O}$	$NaHCO_3$ در جدول فوق بر حسب
60	12/4	می باشد

حل:

$m_{NaHCO_3} = 10000 Kg \quad \text{at} \quad 60^\circ F$

$m_{NaHCO_3} = 500 Kg \quad \Rightarrow \quad T_C = ?$

$NaHCO_3 \xrightarrow{F=10000kg} \quad \text{سرمایش} \quad \text{NaHCO}_3 \xrightarrow{9500kg} T_C = ?$

\downarrow

$m_{\text{crystal } NaHCO_3} = 500 Kg$

$\Rightarrow \quad m_{NaHCO_3,\text{in}} - m_{NaHCO_3,\text{out}} = 0$

$\Rightarrow \quad m_{NaHCO_3,\text{in}} = m_{NaHCO_3,\text{out}}$

$\Rightarrow \quad 10000x_{NaHCO_3} = 500 + (10000 - 500)x'_{NaHCO_3}$

$NaHCO_3$ موانع حول سیستم برای ماده

www.ShimiPedia.ir
Base: 100 gr of H₂O

جرم كل محلول اشباع در 60 درجه صفرایت = 100 + 16.4 = 116.4 gr

\[x = \frac{m_{NaHCO_3}}{m_t} = \frac{16.4}{116.4} \]

\[\Rightarrow 10000 \times \frac{16.4}{116.4} = 500 + 9500 \times x_{NaHCO_3} \Rightarrow x'_{NaHCO_3} = 0.096 \]

Base: 1 gr of output's

\[
\begin{align*}
0.096 \text{ gr NaHCO}_3 & \Rightarrow C = ? \\
(100 - 0.096) \text{ gr H}_2\text{O} & \Rightarrow C = \frac{100 \times 0.096}{1 - 0.096} = 10.62 \frac{\text{gr}_{NaHCO_3}}{100 \text{ gr H}_2\text{O}}
\end{align*}
\]

با درونیابی خواهیم داشت:

\[
\begin{align*}
(11.1, 30) & \Rightarrow (10.62, ?) \Rightarrow T_c = 26.8^\circ C \\
(9.6, 20) & \Rightarrow (10.62, ?) \Rightarrow T_c = 26.8^\circ C
\end{align*}
\]
موازنده مواد با استفاده از روش های یکپارچه

در صورتی که مجهولات مسئله وابسته به یکدیگر باشند و معادلات مشترک داشته باشند، مسائل مربوطه را مسائل با روش یکپارچه می نامند. چنانچه دستگاه معادلات بدست آمده تحم معادلات مشترک باشند به راحتی قابل حل است ولی اگر روابط غیر خطی باشند معمولا می باستند روش های تریمی و کامپیوتری به کار رود.

مثال: اگر مقدار 20 کیلو گرم اسید سولفوریک 77/7% به مقدار نامعینی از همراه نتیجه با مقدار 18/63% تولید کنیم، کمی مقدار اسید 18/63% را مشخص کنید.

\[F_1 = 200 \text{ Kg} \]
\[H_2\text{SO}_4 : 77.7\% \]
\[P \]
\[H_2\text{SO}_4 : 18.63\% \]
\[F_2 = ? \]
\[H_2\text{SO}_4 : 12.43\% \]

موازنده جرم کل حول سیستم:

\[m_{in} = m_{out} \]
\[F_1 + F_2 = P \Rightarrow P - F_2 = 200 \]
موازنه ماده حول سیستم برای سولفوریک اسید:

\[m_{\text{H}_2\text{SO}_4\text{ in}} - m_{\text{H}_2\text{SO}_4\text{ out}} = 0 \]
\[(200 \times 0.777 + 0.1243F_2) - 0.1863P = 0 \]
\[0.1863P - 0.243F_2 = 200 \times 0.777 \]

\[\Rightarrow \begin{cases}
P - F_2 = 200 \\
0.1863P - 0.1243F_2 = 200 \times 0.777
\end{cases} \]

معادلات فوق باید حل شود.

مثال: در شکل زیر یک نمونه از برج تقطیر همراه با اطلاعات لازم داده شده است. مطلوب است جرم محلول مقطر بر حسب کیلو گرم به ازای هر کیلو گرم از خوراک ورودی.

www.ShimiPedia.ir
حل:

وازانه جرم کلی حول سیستم:

\[m_{in} = m_{out} \]

\[F = W + D \Rightarrow W + D = 1 \quad (I) \]

وازانه ماده حول سیستم برای اتانول:

\[m_{inEtOH} - m_{outEtOH} = 0 \]
\[0.35F - (0.85D + 0.05W) = 0 \quad (II) \]

\[I.II \Rightarrow \begin{cases} W + D = 1 \\ 0.05W + 0.85D = 0.35 \end{cases} \Rightarrow W = 0.625Kg, D = 0.375Kg \]

نکته: یک جسم (حجم) رابط، ماده ای است که بدون هیچگونه تغییری و نیز بدون آنکه ماده ی دیگری به آن اضافه و یا کاسته شود از جریانی به جریان دیگر منتقل می شود. به زبان ساده تر یک جسم رابط ماده ای است که از یک جریان وارد می شود و بدون آنکه در سایر جریان‌ها پیش گردد از یک جریان خارج می شود.

مزیت استفاده از حجم رابط و نوشتن موازنه برای آن این است که می توانند مسائل با روش جبری را ساده تر کرد و یا باعث شود که تبدیل به مسائل با روش مستقیم شوند.

به شکل زیر توجه کنید:

\[A, C, D \]

\[A, B \rightarrow A, B, C, D \]

\[C, D \rightarrow \]

جسم رابط است \(B \)

www.ShimiPedia.ir
مثال: چنانچه یک کیلوگرم ماهی صد شده را بخواهیم، رطوبت و آب زدایی کیمی ابتدایی ۸۰٪ آب باشد و ۱۰ کیلوگرم از آب آن خارج کنیم و محصول بجامانده ۴٪ آب داشته باشیم مطلوب است وزن قطعات ماهی ورودی به خشک کن.

روش اول: بدون در نظر گرفتن جرم وابطه:

\[100\text{kg} \ H_2O \uparrow \]

\[\begin{array}{l}
20\% H_2O \\
\text{dryer} \\
40\% H_2O \\
A
\end{array} \]

موازنده جرم کلی:

\[m_{\text{in}} = m_{\text{out}} \]
\[F = W + P \quad \Rightarrow \quad F - P = 100 \quad (I) \]

موازنده ماده حول سیستم برای آب:

\[m_{H_2O \text{ in}} - m_{H_2O \text{ out}} = 0 \]
\[0.8F - (W + 0.4P) = 0 \]
\[0.8F - 0.4P = 100 \quad (\Pi) \]

موازنده ماده حول سیستم برای آب:

\[\begin{cases}
F - P = 100 \\
0.8F - 0.4P = 100
\end{cases} \quad \Rightarrow \quad P = 50\text{Kg} \quad F = 150\text{Kg} \]

وزن ماهی خالص = ۰.۲×۱۵۰ = ۳۰\text{Kg}
\[\text{or} \quad 0.6 \times 50 = 30\text{Kg} \]
روش دوم: با در نظر گرفتن جسم رابط (ماهی ها جسم رابط هستند)

موازنه جرم کلی:

\[F - P = 100 \]

 موازنه ماده برای ماهی ها حول سیستم:

\[0.2F = 0.6P \Rightarrow F = 3P \]

\[2P = 100 \Rightarrow \begin{cases} P = 50 \\ F = 150 \end{cases} \Rightarrow 0.2 \times 150 = 30Kg \]

مثال: برای اندازه‌گیری شدت جریان سیال در خطوط لوله و یا دبی رودخانه‌ها از مواد ریزاب به مقدار ناجی استفاده می‌شود. فرض کنید تجزیه آب جاری در یک رودخانه وجود را به تدریج و یکسان با سرعت 180 ppm Na₂SO₄ را نشان می‌دهد. اگر 1000 بیون و تجزیه آب در بین دوی دست رودخانه 3300 ppm Na₂SO₄ را نشان دهد، دبی آب رودخانه را بر حسب \(\frac{gal}{hr} \) باید آورید.

\[F_1 = 10lbm_{Na_2SO_4} \]

\[t = 1hr \]

\textit{Base}: 1hr

\[X_{H_2O} \]

\[Na_2SO_4 \]

\[F_1 \]

\[180 ppm \]

\[Na_2SO_4 \]

\[F_2 \]

\[3300 ppm \]

\[X_{H_2O} \]
موازنده جرم کلی:

\[
m_{\text{in}} = m_{\text{out}}
\]

\[
F_1 + F_2 = P \Rightarrow P - F_1 = 10 \quad (1)
\]

موازنده ماده برای آب حول سیستم:

\[
m_{H_2O \text{ in}} - m_{H_2O \text{ out}} = 0
\]

\[
F_1 \cdot x_{H_2O} - P \cdot x_{H_2O} = 0
\]

\[
F_1 \left(1 - \frac{180}{10^6}\right) = P \left(1 - \frac{3300}{10^6}\right) \quad \Rightarrow \quad P = \frac{1 - \frac{180}{10^6}}{1 - \frac{3300}{10^6}} \times F_1 \quad (2)
\]

\[
\begin{cases}
(1) \\
(2) \Rightarrow \quad F_1 = 3194.56 lbm
\end{cases}
\]

\[
\Rightarrow \dot{m} = \frac{F_1}{1 \text{hr}} = 3194.5 \frac{lbm}{hr}
\]

\[
\dot{V} = \frac{\dot{m}}{\rho} = \frac{3196.5 lbm}{hr} \times \left(\frac{62.4 lbm}{1 ft^3}\right) \times \frac{7.48 gal}{1 ft^3} = 382.9 \frac{gal}{hr}
\]

مثال: جریان نیترات باریم در 100 درجه سانتی‌گراد برای 34 ساعت در صفر درجه برای 5 گرم نیترات باریم تا صفر درجه سانتی‌گراد افزایش یافت، می‌باشد.

الف) اگر پس از 100 گرم نیترات باریم خالص را به صورت یک محلول آب‌هاید 100 درجه سانتی‌گراد در آب مورد نیاز آب مورد نیاز آب مورد نیاز بود؟

ب) اگر محلول مذکور را تا صفر درجه سرد کنیم چه مقدار نیترات باریم می‌تواند از محلول خارج می‌شود؟

الف)

\[\begin{array}{c}
100 gr \\
Ba(NO_3)_2 \text{ (net)} \\
\rightarrow \\
\downarrow \quad W = ? \\
H_2O \\
\rightarrow \\
\rightarrow \quad \text{محلول اشباع} \\
P \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \quad \text{Ba (NO}_3) \text{)}
\end{array} \]
جدول دقيق بدون گرد کردن اعداد به صورت زیر خواهد بود:

\[
x = \frac{m_{\text{solvent}}}{m_{\text{solution}}} = \frac{34g}{100 + 34g} = 0.25
\]

\[
W = P \times (1 - 0.25) = P \times 0.75 \Rightarrow P = \frac{W}{0.75} = 1.33W
\]

\[
100 + W = P \Rightarrow 100 + W = 1.33W \Rightarrow W = \frac{100}{0.33} = 303.03 Kg
\]

جواب دقيق بدون گرد کردن اعداد به صورت زیر خواهد بود:

\[
W = P \left(1 - \frac{34}{134}\right) \Rightarrow P = \frac{W}{\left(1 - \frac{34}{134}\right)}
\]

\[
100 + W = P \Rightarrow 100 + W = \frac{W}{1 - \frac{34}{134}} \Rightarrow 100 = W \left(\frac{1}{1 - \frac{34}{134}} - 1\right) \Rightarrow W = \frac{100}{\left(\frac{1}{1 - \frac{34}{134}} - 1\right)} = 294.1 Kg
\]

(ب)

در این مرحله است. مرحله ی قبل پرایب‌دید به ۱۱۲۱ در این مرحله است.

از قسمت قبل داریم:

\[
F_1 = \frac{W}{1 - \frac{34}{134}} = 294.1 \Rightarrow F_1 = 394.9 Kg
\]

در این سوال آب حجم رابط بو به‌وا توشند موازیه حول سیستم برای حجم رابط‌داریم:

\[
F_1 \times (1 - \frac{34}{134}) = P_1 \left(1 - \frac{5}{105}\right)
\]

\[
P_1 = \frac{394.09 \times (1 - \frac{34}{134})}{\left(1 - \frac{5}{105}\right)} = 308.8 Kg
\]

موازیه جریم حول سیستم:

\[
F_1 = P_2 + P_1 \Rightarrow P_2 = F_1 - P_1 = 394.09 - 108.8 = 85.29 Kg
\]
جریان برگشتی (Recycle):

جریان هایی برگشتی امروزه در بسیاری از موارد از جمله برگشت دادن مواد اولیه ای که بدون شرکت در واکنش از راکتور خارج می‌شوند به قبیل راکتور و یا انجام امور کنترلی همچون کنترل دما، فشار، غلظت و... مورد استفاده قرار می‌گیرند.

در برخی موارد، واکنش‌ها به شرایط مسائلی می‌باشند که ممکن است مسائلی به وجود آورده باشد که لازم بود دقت دقت نمود که با با برای بررسی کنید که چگونه با باید به یک توافق بین شما و با اطلاعات لازم به خصوص درجه تکمیل واکنش توجه کنید.

برای یافتن محدود کننده باید حساسیت فراوان بررسی شود و برای اینکه بپذیریم چقدر از مواد وارد واکنش شده اند، باید محصول به‌طور کلی به‌صورت شور و

جریان کنار گذر (by pass):

در برخی موارد، شرایط احتمالی می‌کنند که مقداری از مواد شرکت کننده در فراوان بودن اینکه وارد فراوان شوند و از کنار آن عبور کرده و با محصول به‌صورت ترکیب شوند نا محصول نهایی را تولید کنند. این جریان را جریان کنار گذر می‌نامند.

www.ShimiPedia.ir
جریان زدایشی (purge):

در استفاده از جریان‌های برگشتی چنانچه این جریان را قبل از استفاده در مخلوط کننده مورد عمل تصمیم قرار دهیم و مواد زائد را از این بگیریم جریان ماد زاید را جریان زدایش می‌نامند.

نکته: در صورتیکه مسئله اشاره ای نکرده باشد غلظت جریان‌های های زدایشی و بازگشتی را یکسان در نظر می‌گیریم.
مثال: در یک برج تقطیر $\frac{10000}{hr}$ از مخلوطی مشکل از 50% بنزن و 50% تولوئن را تفکیک می‌کنند. محصول فوقانی برج پس از عبور از کندانسر محنت از 95% بنزن و مواد خروجی از قسمت تحتانی $\frac{8000}{hr}$ تولوئن می‌باشد. شدت جریان بخار و رودی به کندانسر از قسمت فوقانی برج D است. جزئی از این محصول را به صورت جریان برگشتی به برج می‌گردد و باقی‌مانده آن جهت مصارف دیگر خارج می‌شود. با فرض آنکه جریان فوقانی برج V, محصول خروجی W و جریان برگشتی R دارای ترکیب مشابه باشند، مقدار V, نسبت مقدار جریان برگشتی به محصول خروجی R، D, و W را محاسبه خواهیم کرد.

در پایین رابطه میان جریانات مطابق به شرح داده شده قرار گرفته و در اینجا به کمک این نشانه‌ها می‌توانیم برجام عمل کنیم.

\[R = ? \]

\[D = 10000 - W \] \hspace{1cm} \text{(I)}

\[F = D + W \]

\[10000 = D + W \] \hspace{1cm} \text{(II)}

\[x_B F = x_{B_0} D + x_{B_w} W \]

\[0.5(10000) = 0.95D + 0.4W \] \hspace{1cm} \text{(III)}

\[W : \{96\% T, 4\% B\} \]

\[D : \{95\% B, 5\% T\} \]

\[R : ? \]
(1), (2) $\Rightarrow \begin{cases} D = 5050\text{Kg} \\ w = 4950\text{Kg} \end{cases}$

موازنه کلی حول سیستم (II)

$V = R + D$

$8000 = R + 5050 \Rightarrow R = 2950\text{Kg}$

$\Rightarrow \frac{R}{D} = \frac{2950}{5050} = 0.584$

مثال: نتایج مربوط به یک تبخير کننده در شکل زیر نشان داده شده است. مطلوب است شدت جریان Kg/hr بر گشکی بر حسب $	ext{Kg/h}$ بر حسب $	ext{Kg/h}$

$\begin{array}{c}
\text{Fresh Feed} \\
\text{10000 kg/hr} \\
\text{KNO}_3 20\% \\
\text{ محلول} \\
\text{0.6 kg KNO}_3 \\
\text{kg H}_2\text{O} \\
\text{M} \\
\text{W} \\
\text{H}_2\text{O} \\
\text{Boiler} \\
\text{Mixer} \\
\text{R} = ? \\
\text{KNO}_3 50\% \\
\text{Crystallizer} \\
\text{C} \\
\text{KNO}_3 4\% \text{H}_2\text{O} \\
\text{base}: 1\text{kg H}_2\text{O} \\
\end{array}$

موازنه حموله کل سیستم برای KNO_3

$m_{\text{KNO}_3\ in} - m_{\text{KNO}_3\ out} = 0$

$10000 \times 0.2 - 0.96 \times C = 0 \Rightarrow C = 2083.3\text{Kg}$

موازنه جرم کلی حول مبنا گردیده: KNO_3

$m_{in} = m_{out}$

$M + C + R$

$M - R = 2083.3$
موازنه حوالی سیستم متغیر کننده برای KNO_3:

$$0.5M = 0.96C + \frac{0.6}{1.6} R$$

$$\begin{cases} M - R = 2083.3 \\ \frac{0.6}{1.6} R = 0.96 + 2083.3 \end{cases} \Rightarrow M = 9454.9Kg \quad R = 7371.68Kg$$

مثال: در یک روش تولید یوکومتیل 2000 کیلوگرم/روز به منشأ اندازه‌ای اثر می‌دهم و واکنش زیر اتفاق می‌افتد:

$$HI + CH_3OH \rightarrow CH_3I + H_2O$$

اگر محصول محتمل 81.6 درصد وزنی CH_3I به همراه منشأ اندازه‌ای باشد و پساب مشکل از HI 82.6 درصد وزنی اسیدیودوهیدریک و 17.4 درصد فرض شود و درجه تکمیل واکنش در راکتور 50% باشد مطلوب است:

$$HI = 128 \quad CH_3OH = 30 \quad CH_3I = 142 \quad H_2O = 18$$

باید مقدار HI در جریان برگشتی به مقدار 81.6% CH_3I و 18.4% CH_3OH در خروجی داشته باشد.
موازنه حوالی‌های سیستم برای HI:

\[m_{HI}^{\text{in}} - m_{HI}^{\text{out}} + m_{HI}^{\text{gen}} - m_{HI}^{\text{cons}} = 0 \]
\[(1) \quad 2000 - 0.826W + 0 - (2000 + R)0.4 = 0 \]

موازنه ماده حوالی‌های کل سیستم برای CH\textsubscript{3}OH:

\[m_{CH_3OH}^{\text{in}} - m_{CH_3OH}^{\text{out}} + m_{CH_3OH}^{\text{gen}} - m_{CH_3OH}^{\text{cons}} = 0 \]
\[(2) \quad M - 0.184P + 0 - \frac{30(2000 + R) \times 0.4}{128} = 0 \]

موازنه ماده حوالی‌های کل سیستم برای CH\textsubscript{3}I:

\[m_{CH_3I}^{\text{in}} - m_{CH_3I}^{\text{out}} + m_{CH_3I}^{\text{gen}} - m_{CH_3I}^{\text{cons}} = 0 \]
\[(3) \quad 0 - 0.816P + \frac{142(2000 + R) \times 0.4}{128} - 0 = 0 \]

موازنه ماده حوالی‌های آب:

\[m_{H_2O}^{\text{in}} - m_{H_2O}^{\text{out}} + m_{H_2O}^{\text{gen}} - m_{H_2O}^{\text{cons}} = 0 \]
\[(4) \quad 0 - 0.174W + \frac{18(2000 + R) \times 0.4}{128} - 0 = 0 \]

با حل دستگاه معادلات فوق مجهولات بدست خواهد آمد.
مثال: در شکل زیر ماده مرطوب A در 3 مرحله توسط هوا گرم که خودش شامل 5% رطوبت می‌باشد خشک می‌گردد. با فرض اینکه کلیه درصد های داده شده جرمی باشند مقادیر جریان روان شکل را بدست آوریم.

\[m_{A_{in}} - m_{A_{out}} = 0 \]
\[0.2F = 0.9 \times 50 \]
\[F = \frac{0.9 \times 50}{0.2} = 225 \]

\[m_{in} = m_{out} \]
\[F + 80 = W_1 + P \]

\[m_{A_{in}} = m_{A_{out}} \]
\[0.2F = 0.6P \Rightarrow P_1 = \frac{0.6 \times 225}{0.5} = 90Kg \]
\[225 + 80 - 90 = W_1 = 215Kg \]
موازنه حول مرحله ۱ برای آب:

\[m_{H_2O\text{ in}} = m_{H_2O\text{ out}}\]

\[0.05 \times 80 + 0.8 \times 225 = 0.5 \times 90 + x_w \times 215 \quad \Rightarrow \quad x_w \approx 0.65\]

برای مراحل بعد نیز به همین صورت عمل می‌کنیم.
فصل سوم

گاز، بخار، مایع و جامد
گاز، بخار، مایع و جامد

در بیانیه‌ای از طرایحی ها نیاز است که خواص سیستم به‌خصوص ارتباط T, P, V که به ترتیب نشان دهنده حجم، دما و فشار سیستم هستند، مشخص گردد تا بتوان دستگاه‌ها، ظروف، پمپ‌ها، کمپرسورها و ... را طراحی کرد.

 واضح است که نهایی ارقام و اطلاعات تجربی دقیق و قابل اطمینان برای هر یک از کامپیت های موجود در طبیعت ممکن نمی‌باشد در نتیجه در مواردی که اطلاعات آزمایشگاهی وجود ندارد، باید خواص مورد نظر را بر اساس پاره‌ای از اصول مورد قبول مثل قانون گازهای کاملاً و با روابط تجربی تخمین زد.

 گازها:

 گاز ایده آل: گازی که بتوان از برهم‌کنش گیاه و آن صرف نظر کرد.

 معادله حالت گاز ایده آل:

\[PV = nRT \]

\(P \): فشار مطلقة
\(V \): حجم
\(n \): تعداد مول
\(R \): ثابت عمومی گازها
\(T \): دمای مطلقة

نکته 1: در رابطه ی فوق دما و فشار حتی بايد مطلقة باشد.
نکته 2: واحده دما، فشار، مول و حجم می‌باشند با واحد SI هم‌خوانی داشته باشد.
نکته 3: واحده R

\[R = \frac{PV}{nT} \]

\[SI: \frac{(pa)(m^3)}{(gmole)(k)} \]

\[R = 8.314 \]
قانون آلوگندرو: هر گرم مول از گاز ایده آل در شرایط STP دارای 22.4 لیتر حجم است.

\[PV = nRT \quad \Rightarrow \quad R = \frac{PV}{nT} = \frac{(1.013 \times 10^5 \text{ Pa})(22.4 \times 10^{-3} \text{ m}^3)}{(1 \text{ gmole})(273 \text{ K})} \]

محاسبه \(R \) در سیستم مهندسی:

\[
R = \frac{8.314 (\text{Pa})(\text{m}^3)}{(\text{gmole})(\text{K})} \quad \frac{14.7 \text{ psia}}{1.013 \times 10^6 \text{ Pa}} \quad \frac{35.31 \text{ ft}^3}{1 \text{ m}^3} \quad \frac{454 \text{ gmole}}{1 \text{ lbmole}} \quad \frac{1 \text{ k}}{1.8R}
\]

\[R = 10.73 \left(\frac{\text{psia}}{1 \text{ ft}^3} \right) \left(\frac{1 \text{ lbmole}}{\text{gmole}} \right) \]

نکته: همان‌گونه که در نکته 2 گفته شد واحدهای پارامتر ها در رابطه \(R \) واحدهای خوشه‌ای داشته باشند، باید انجام این کار در این کار واحدهای پارامتر ها را به روش زیر را انتخاب کرد:

1- تغییر واحدهای این مسئله مطلق \(R \) موجود.

2- تغییر واحدهای مطلق \(R \) مسئله های مسئله.

به عنوان مثال جانانچه در مسئله واحدهای حجم میلی متر مکعب، واحدهای فشار، واحدهای مول، \(ft_{H_2O} \)، واحد مول \(lbmole \) بوده و دمای حسب کلوین از ما بخواهند، خواهیم داشت:

\[
R = \frac{8.314 (Pa)(m^3)}{(gmole)(K)} \quad \frac{33.91 ft_{H_2O}}{1.013 \times 10^5 Pa} \quad \frac{1000 m^3}{1 m^3} \quad \frac{454 gmole}{1 lbmole}
\]

\[R = 1261.5261 \left(\frac{ft_{H_2O}}{lbmole} \right) \left(\frac{mm^3}{gmole} \right) \left(\frac{gmole}{lbmole} \right) (K)
\]

مثال: حجمی که توسط 88lb \(ft_{H_2O} \) دی اکسید کربن در فشار \(22.2 \text{ ft}_{H_2O} \) و دمای داده شده \(328K \) اشغال می‌شود را محاسبه کنید.

\[
R = \frac{8.314 P a m^3}{gmole.K} \quad \frac{454 gmole CO_2}{lbmole} \quad \frac{33.91 ft_{H_2O}}{1.013 \times 10^5 Pa} = 1.26 \frac{ft_{H_2O} m^3}{lbmole.K}
\]

\[
V = \frac{1.26 ft_{H_2O} m^3}{lbmole.K} \quad \frac{1 lbmole CO_2}{44 lbmole} \quad \frac{88 lb CO_2}{32.2 ft_{H_2O}} = 22.539 m^3
\]
مثال: مقدار 10 پوند گاز دی اکسید کربن در یک مخزن آتش نشانی به حجم 20 فوت مکعب و دمای 30 درجه سانتی‌گراد موجود است، با فرض آنکه قانون گاز کاملاً صادق باشد تعیین کنید که اگر وسایل اطمینان از پر بودن مخزن امتحان به عمل آوریم فشار سنتی که فشاری را بايد نشان دهد؟

\[10 \text{ lb}_m \text{ CO}_2 = m \]

\[V = 20 \text{ ft}^3 \]

\[T = 30^\circ C \]

\[R = 10.73 \left(\frac{ \text{psia} \cdot \text{ft}^3}{\text{lbmol} \cdot \text{R}} \right) \]

\[P = \frac{\frac{\text{lbmol} \cdot \text{R}}{\text{psia} \cdot \text{ft}^3}}{\left(\frac{\text{lbmol} \cdot \text{R}}{\text{psia} \cdot \text{ft}^3} \right)} \left(30 + 273 \right) \left(\frac{1.8R}{1K} \right) \left(\frac{1}{20 \text{ ft}^3} \right) = 66.50 \text{ Psia} \]

\[P_{abs} = P_{rel} + P_{air} \Rightarrow P_{rel} = P_{abs} - P_{air} = 66.50 - 14.7 = 51.80 \text{ Psig} \]

تذکر: در مثال فوق چون فشار هوا داده نشده بعنی فشار هوا استاندارد در نظر گرفته شود.

30\(^\circ\)C و دمای 100\(\text{cm}^3\) موجود

مثال: فرض کنید نمونه از مخلوط مونوکسید نیترزون در یک ظرف به حجم 100\(\text{cm}^3\) وجود دارد و اکسیژن زیر در ظرف به وقوع می‌پردازد:

\[2 \text{NO} + \text{O}_2 \longrightarrow 2 \text{NO}_2 \]

اگر جرم کل موجود در ظرف 0.291\(\text{gr}\) و فشار ظرف 170\(\text{Kpa}\) باشد و محاسبه کنید چند درصد مخلوط \(\text{NO}\) می‌باشد.

\[V = 100\text{cm}^3 \]

\[T = 30\(^\circ\)C \]

\[m = 0.291\text{gr} \]

\[P = 170\text{Kpa} \]

\[M_{\text{NO}} = 30 \]

\[M_{\text{NO}_2} = 46 \]

\[PV = nRT \]

\[\Rightarrow n = \frac{PV}{RT} = \frac{(\text{gmole})(K)}{8.31(Pa)(m^3)} \left| \frac{170 \times 10^3 \text{ Pa}}{30 + 273 \text{ K}} \right| \frac{100\text{cm}^3}{10^3\text{m}^3} = 0.0068\text{gmole} \]
جرم ویژه و چگالی:
جرم واحد حجم هر گاز را گویند که بستگی به دما و فشار دارد و اگر در مسیره ای صحیح از دما و فشار نشند منظور دما و فشار استاندارد است.
چگالی همان تعیین فصل بندهای را دارد.
نکته 1: چنانچه به گنبد شود چگالی یک گاز را محاسبه کنید و در یک بانش بندهای گاز خاص را مساوی با یکدیگر قرار منظور این است که چگالی گاز را نسبت به آن گاز خاص بستگی نبود.
به عنوان مثل:
\[
\text{چگالی}_4 \text{CH}_4 \text{ را محاسبه کنید (1)} \quad \text{CH}_2 = 1
\]
مثال: چگالی ازت را در 80 درجه فارنهایت و 745 mmHg در مقیاسه با گازهای زیر محاسبه کنید.
الف: هوا در شرایط STP 745 mmHg ب - هوا در 80 درجه فارنهایت و
الف:
\[
P V = nRT
\]
\[
PV = \frac{m}{M}RT
\]
\[
\frac{P.M}{RT} = \frac{m}{V} = \rho \quad \Rightarrow \quad \rho = \frac{P.M}{RT}
\]
\[
\text{Sp.gr}_{N_2} = \frac{\rho_{N_2 \text{air at STP}}}{\rho_{air}} = \frac{P_{N_2}M_{N_2}}{P_{air}M_{air}} = \frac{RT_{N_2}}{RT_{air}} = \frac{P_{N_2}M_{N_2}}{P_{air}M_{air}T_{N_2}}
\]
\[
= \frac{745 \times 28 \times (32 \times 460)}{760 \times 29 \times (80 + 460)} = 0.862
\]
ب:
\[
\text{Sp.gr}_{N_2} = \frac{P_{N_2}M_{N_2}T_{air}}{P_{air}M_{air}T_{N_2}} = \frac{M_{N_2}}{M_{air}} = \frac{28}{29}
\]
تذکر: چنانچه دما و فشار با دما و فشار گاز منا یکی بود، چگالی گاز برای نسبت چرم مولکولی ها خواهد بود.

www.ShimiPedia.ir
قانون دالتون

اگر A، B و C و... گازهای ایده آل باشند

\[PV_i = n_i \cdot RT \quad (1) \]

\[n_i = n_A + n_B + \ldots \]

برای تک تک گازها هم می‌توان نوشت:

\[P_A V_i = n_A \cdot RT \]
\[P_B V_i = n_B \cdot RT \]
\[\vdots \]

\[(P_A + P_B + \ldots) V_i = n_i \cdot RT \quad (2) \]

(1), (2) \Rightarrow \quad P_i = P_A + P_B + \ldots = \sum_{i=1}^{n} P_i

قانون دالتون:

جمع فشارهای جزئی = فشار کل در مخلوط های ایده آل

محاسبه فشار جزئی:

\[\frac{P_i}{P_t} \cdot \frac{n_i}{n_t} = y_i \]
\[\Rightarrow P_i = P_t \cdot y_i \]

\[P_i = P_t \cdot y_i \]
قانون آمادگات
با توجه به شکل زیر داریم:

\[P_t V_A = n_A RT \]
\[P_t V_B = n_B RT \]
\[\vdots \]
\[P_t (V_A + V_B + \ldots) = n_t RT \quad (1) \]
\[P_t V_t = n_t RT \quad (2) \]

\[(1), (2) \Rightarrow V_t = V_A + V_B + \ldots \]

می‌توان ثابت کرد:

\[V_i = V_t \cdot y_i \]

محاسبه حجم جزئی
مثال: چنانچه گاز متان را با 20% هوا اضافه در یک محفظه احترام درسته ابتدا مخلوط کنیم و سپس به‌وسیله جریان الکتریکی عمل احترام انجم شود بگونه‌ای که 10% متان ناقص بسوزد و درجه پیشرفت واکنش احترام کامل تیز 80% باشد و بعد از اتمام احترام فشار سنج، فشار محفظه را 3 اتمسفر نشان دهد، با فرض اینکه حجم ظرف 3 متر مکعب و مقدار متان تازی‌ی به آن 46 گرم باشد:
الف: دمای محفظه را بعد از اتمام احترام محاسبه کنید.
ب: فشار و حجم جزئی مواد باقیمانده در محفظه را بدست آورید.

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}
\]

64 gr \(\text{CH}_4 \)

\[n_{\text{CH}_4} = \frac{m_{\text{CH}_4}}{M_{\text{CH}_4}} = \frac{64}{16} = 4 \text{g mole} \]

الف:

\[PV_i = n_i RT \]

\[T = \frac{PV_i}{n_i R} \]

\[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \]

بنابراین به نسبت ضراپ استوکیومتری در واکنش فوق با توجه به اینکه اکسیژن و ورودی بر اساس احترام کامل محاسبه می‌گردد:

اکسیژن مورد نیاز = 8 g mole

8 × 1.2 = 9.6 g mole

اکسیژن ورودی = نیتروژن مورد نیاز = 9.6 × \(\frac{79}{21} \) = 36.11 g mole
موازنه حاصل سیستم برای \(CO_2 \):

\[
\begin{align*}
\frac{\text{n}_{CO_2 \text{ in}} - \text{n}_{CO_2 \text{ out}} + \text{n}_{CO_2 \text{ gen}} - \text{n}_{CO_2 \text{ cons}}}{\text{n}_{CO_2 \text{ out}}} &= 0 \\
0 - \text{n}_{CO_2 \text{ out}} + 3.6 \times 0.8 - 0 &= 0 \\
\frac{\text{n}_{CO_2 \text{ out}}}{2.88 \text{gmole}} &= 0
\end{align*}
\]

موازنه حاصل سیستم برای \(H_2O \):

\[
\begin{align*}
\frac{\text{n}_{H_2O \text{ in}} - \text{n}_{H_2O \text{ out}} + \text{n}_{H_2O \text{ gen}} - \text{n}_{H_2O \text{ cons}}}{\text{n}_{H_2O \text{ out}}} &= 0 \\
\text{n}_{H_2O \text{ out}} &= \text{n}_{H_2O \text{ gen}} = 7.2 \times 0.8 + 0.8 = 6.56 \text{gmole}
\end{align*}
\]

موازنه حاصل سیستم برای \(CO \):

\[
\begin{align*}
\frac{\text{n}_{CO \text{ in}} - \text{n}_{CO \text{ out}} + \text{n}_{CO \text{ gen}} - \text{n}_{CO \text{ cons}}}{\text{n}_{CO \text{ out}}} &= 0 \\
\Rightarrow \text{n}_{CO \text{ out}} &= 0.4 \text{gmole}
\end{align*}
\]

موازنه حاصل سیستم برای \(O_2 \):

\[
\begin{align*}
\frac{\text{n}_{O_2 \text{ in}} - \text{n}_{O_2 \text{ out}} + \text{n}_{O_2 \text{ gen}} - \text{n}_{O_2 \text{ cons}}}{\text{n}_{O_2 \text{ out}}} &= 0 \\
9.6 - \text{n}_{O_2 \text{ out}} + 0 - (7.2 \times 0.8 + 0.6) &= 0 \\
\Rightarrow \text{n}_{O_2 \text{ out}} &= 3.24 \text{gmole}
\end{align*}
\]

موازنه حاصل سیستم برای \(N_2 \):

\[
\begin{align*}
\frac{\text{n}_{N_2 \text{ in}} - \text{n}_{N_2 \text{ out}} + \text{n}_{N_2 \text{ gen}} - \text{n}_{N_2 \text{ cons}}}{\text{n}_{N_2 \text{ out}}} &= 0 \\
\Rightarrow \text{n}_{N_2 \text{ in}} &= \text{n}_{N_2 \text{ out}} = 36.11 \text{gmole}
\end{align*}
\]

موازنه حاصل سیستم برای \(CH_4 \):

\[
\begin{align*}
\frac{\text{n}_{CH_4 \text{ in}} - \text{n}_{CH_4 \text{ out}} + \text{n}_{CH_4 \text{ gen}} - \text{n}_{CH_4 \text{ cons}}}{\text{n}_{CH_4 \text{ out}}} &= 0 \\
4 - \text{n}_{CH_4 \text{ out}} + 0 - (3.6 \times 0.8 + 0.4) &= 0 \\
\text{n}_{CH_4 \text{ out}} &= 0.72 \text{gmole}
\end{align*}
\]
<table>
<thead>
<tr>
<th>چند</th>
<th>(N (\text{gmole}))</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CO_2)</td>
<td>7.88</td>
<td>0.057</td>
</tr>
<tr>
<td>(CO)</td>
<td>0.4</td>
<td>0.008</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>6.56</td>
<td>0.131</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>0.72</td>
<td>0.014</td>
</tr>
<tr>
<td>(O_2)</td>
<td>3.24</td>
<td>0.064</td>
</tr>
<tr>
<td>(N_2)</td>
<td>36.11</td>
<td>0.72</td>
</tr>
<tr>
<td>جمع کل</td>
<td>49.91</td>
<td>0.99</td>
</tr>
</tbody>
</table>

\[
T = \frac{3 \text{atm}}{1} \times \frac{1.013 \times 10^5 \text{pa}}{1} \times \frac{3 \text{m}^3}{1} \times \frac{1}{49.91 \text{gmole}} \times \frac{\text{gmole. K}}{8.314 \text{Pa.m}^3} \\
= \frac{3 \times 1.013 \times 10^5 \times 3}{49.91 \times 8.314} = 2197.12 \text{K} = 1924.12^\circ \text{C}
\]

\[
\begin{align*}
CO_2 \quad \begin{cases}
P_{CO_2} = P_r y_{CO_2} = 3 \text{atm} \times 0.057 \\
V_{CO_2} = V_r y_{CO_2} = 3 \text{m}^3 \times 0.057
\end{cases}
\end{align*}
\]
گازهای حقيقی

تعريف: گازی که نتوان از برهمکنش ذرات آن صرف نظر کرد.
توجه: ایفه آل بودن یک گاز یک امر کاملاً نسبی است و بستگی به دما، فشار و نوع فرآیند دارد. بطوریکه یک گاز را امکان دارد در یک شرایط ایفه آل و در شرایط دیگر حقيقی فرض کنیم و یا یک گاز دیگر در همان شرایط دما و فشار ایفه آل قدرد در حالیکه سایر گازها را نتوان ایفه آل فرض کرد.

نکته: افزایش فشار در دمای ثابت و در دما ثابت هر دو باعث می شوند که افزایش ایفه آل فاصله بگیریم و به سمت گازهای حقيقی تبدیل شویم. در این صورت خطای رایطه ی افزایش می باشد و دیگر نمی توان از آن استفاده کرد.

در مورد گازهای حقيقی معادله ی حالت ساده و جامعی وجود ندارد و در طول تاریخ (از قرون تاکنون) دانشمندان برای برخی گازهای خاص در محدوده های دما و فشار مشخص آزمایشاتی انجام داده اند و یک سری معادلات تجربی بدست آورده اند که این معادلات فقط برای همان گازها و فقط همان محدوده ی دما و فشار قابل استفاده است.

از جمله معادلات تجربی اولیه ای که ارائه گردیده، معادله ی حالت واندروالس است.

معادله واندروالس

\[(P + \frac{n^2 a}{V^2})(V - nb) = nRT \]

یا

\[P = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2} \]

\[\text{ثابت هایی هستند که برای هر گاز از روش آزمایش بدست می آیند.} \]

\[b \text{ و } a \]

\[n, P \text{ فشار مطلق}]

\[n, T \text{ ناپذیرا مول }]

\[V, T \text{ حجم}]

\[b \text{ و } a \text{ ثابت گازها} \]
بیدا کردن مجهولات از معادله واندروالس

\[[nb] = [V] \quad \Rightarrow \quad [b] = \frac{[V]}{[n]} \]

\[SI : \frac{m^3}{\text{gmole}} \]

\[\frac{n^2a}{V^2} = [P] \quad \Rightarrow \quad [a] = \frac{[P][V]^2}{[n]^2} \]

\[SI : \frac{Pa.(m^3)^2}{(\text{gmole})^2} \]

\[T = \frac{(P + \frac{n^2a}{V})(V - nb)}{nR} \]

\[P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2} \]

\[V^3 + \left(\frac{nRT}{P}\right)V^2 + \left(\frac{n^2a}{P}\right)V - \frac{n^3ab}{P} = 0 \]

مجهول: \(T \)

مجهول: \(P \)

مجهول: \(V \)

باید معادله درجه 3 مجهول بدهد خواهد آمد.

تمرین - اگر \(n \) مجهول باشد معادله درجه 3 مربوطه در بیدا کنید.

تذکر: مثال 12-3 کتاب در این زمینه مطالعه شود.
مثال: مخزنی به حجم 5ft^3 محتوی 50lb پروپان زیر آفتات داغ قرار دارد. فشار سنج فشار را نشان می‌دهد. دمای پروپان داخل مخزن چیست؟ (با استفاده از معادله واندروالس)

\[
T = \frac{(P + \frac{n^2a}{V^2})(V - nb)}{nR}
\]

\[
P = 665 + 14.7 = 679 \text{psia}
\]
\[
n = \frac{50}{44} = 1.14 \text{lbmole}
\]
\[
V = 5 \text{ft}^3
\]
\[
R = 10.73 \frac{(\text{Psia})(\text{ft}^3)}{(\text{lbmole})(R)}
\]
\[
a = 9.24 \times 10^6 \times 3.776 \times 10^{-3} = 34.83 \times 10^3 \text{Psia} \left(\frac{\text{ft}^3}{\text{lbmole}}\right)^2
\]
\[
b = 90.7 \times 1.6 \times 10^{-2} = 1.4512 \times 10^{-2} \frac{\text{ft}^3}{\text{lbmole}} = 1.45 \frac{\text{ft}^3}{\text{lbmole}}
\]
\[
T = \frac{(679.7 + \frac{10.4 \times 34.83 \times 10^3}{52})(5 - 1.14 \times 1.45)}{1.14 \times 10.73} = 681.4 R = 221.4^\circ F
\]
معادله حالت تراکم پذیری برای گاز حقیقی

\[PV = Z nRT \]

\[Z = f(T_r, P_r) \]

\[T_r = \frac{T}{T_c} \]
\[P_r = \frac{P}{P_c} \]
\[V_r = \frac{V}{V_c} \]

\[Z \] ضریب تراکم پذیری
\[T_r \] دمای نقطه‌ای (کاهیده)
\[P_r \] فشار نقطه‌ای (کاهیده)

حجم، فشار و دما هستند.
\[T \], \[P \], \[V \]
\[T_c \] دمای بحرانی
\[P_c \] فشار بحرانی
\[V_c \] حجم بحرانی

با داشتن \(V_r \), \(P_r \) و \(T_r \) (و احیاناً \(V_c \), \(P_c \) و \(T_c \)) بدست آوردن و برای محاسبه دیگر خصوصیات بحرانی مواد می‌توان از ضمیمه D کتاب استفاده نمود.
نمودار دما- فشار برای مواد خالص
نمودار فشار بر حسب دما برای تمام مواد تقریباً از شکل زیر پیروی می‌کند. (البته نمودار هر ماده با ماده دیگر تفاوت‌های جزئی دارد.)

 نقطه بحرانی:

- حداکثر دما و فشاری که در آن حالت تعادل بین فازهای مایع و بخار وجود داشته باشد.

برخی تعاریف از حالت بحرانی:

- حالت بحرانی، این حالت گاز - مایع و عبارت از شرایط فیزیکی خاصی است که در تحت آن دما و فشار بسیار مشخص می‌باشند و بخار به‌صورت کاملاً یکسان در می‌آید.
- این نقطه در مورد یک جسم خالص بالاترین دما و بخار است که در آن بخار و مایع می‌توانند به حالت تعادل با یکدیگر و داشته باشند.
- نقطه بحرانی عبارت از یک نقطه حداکثر است که در آن نبودید شدن یک حالت را مشخص می‌کند.

تذکر ۱ - فقط برای گازهای هیدروژن و هلیم داریم:

\[
T'_c = T_c + 8^\circ K \\
P'_c = P_c + 8\text{atm}
\]

مقادیری هستند که از ضمیمه D کتاب خوانده می‌شوند.

مقادیری هستند که باید در محاسبات به کار برده شوند.

تذکر ۲ - با فرض اینکه گاز در نقطه بحرانی ایده آل باشد داریم:

\[
\hat{V}_c = \frac{RT_c}{P_c} \hspace{1cm} \Rightarrow \hspace{1cm} V_c = n\hat{V}_c
\]
مثال - جانبه مقداری گاز آمونیاک در مخزنی که فشار آن 292 psig و دما 125 درجه فارنهایت و حجم مخزن نیز 120 فوت مکعب (tip) با استفاده از معادله ضریب تراکم را به‌دست آمده‌ایم. پیش‌تر جرم آمونیاک موجود در مخزن را محاسبه کنید.

\[
P = 292 \text{ psig} \\
T = 125^\circ F \\
V = 120 \text{ ft}^3 \\
PV = ZnRT \\
Z(T_r, P_r) \\
T_r = \frac{T}{T_c} , \quad P_r = \frac{P}{P_c} \\
m_{NH_3} = ?
\]

از ضمیمه D آخر كتاب \(NH_3 \):

\[
\begin{align*}
T_c &= (405 - 273) \times 1.8 + 32 + 460 = 730.5^\circ R \\
T_r &= \frac{T}{T_c} = \frac{125 + 460}{730.5} = 0.8 \\
P_r &= \frac{P}{P_c} = \frac{292 + 14.7}{111.3 \times \frac{14.7 \text{ psi}}{1 \text{ atm}}} = 0.19
\end{align*}
\]

\[
Z = 0.85
\]

\[
n = \frac{PV}{ZRT} = \frac{(292 + 14.7) \times 120}{0.85 \times 10.73 \times (115 + 460)} = 6.9 \text{ lb mole}
\]

\[
m = nM = 6.9 \times 17 = 117.26 \text{ lb mole}
\]
مثال - فرض که 2.5 کیلوگرم اکسیژن باعث دمای جسم به حجم 2840 متر مکعب و در دمای -25 درجه سانتی‌گراد تبخیر شود. فشار داخل محیط به مقدار چه مقدار خواهد بود؟ (از معادله ضربی تراکم پذیری استفاده شود)، چنانچه حد مجاز فشار محیط 74 اتمسفر باشد آیا محیط با خطر انفجار مواجه است یا خیر؟

\[
m_{O_2} = 3.5 \text{kg} \\
V = 0.0284 \text{m}^3 \\
T = -25^\circ \text{C} \\
P = ?
\]

\[
T_r = \frac{(-25 + 273)}{154.4} = 1.6 \\
V_r = \frac{V}{V_c} = \frac{\frac{3500}{32}}{2.55 \times 10^{-4}} = 1.018
\]

\[
Z = 0.93 \\
P = \frac{ZnRT}{V} = \frac{0.93 \times \frac{3500}{32} \times 8.314 \times (-25 + 273)}{0.0284 \text{m}^3} = 738495.8 \text{Pa}
\]

\[
738495.8 \text{Pa} \times \frac{1 \text{atm}}{1.013 \times 10^5 \text{Pa}} = 72.9 \text{atm}
\]

پس خطر انفجار وجود ندارد.
مخلوط گازهای حقيقی

در مورد گازهای حقيقی از آنجایی که نمی‌توان از برهمکنش ذرات آنها صرف نظر کرد روابط مورد نظر برای مخلوط آنها نیز با گازهای ایده آل متفاوت است. در این راستا چهار روش انجام محاسبات در مخلوط گازهای حقيقی معرفی می‌شود.

الف) معادلات حالت

به عنوان مثال برای معادله واندروالس:

\[
P_A = \frac{n_A RT}{V - n_A b_A} - \frac{n_A^2 a_A}{V^2}
\]

\[
P_B = \frac{n_B RT}{V - n_B b_B} - \frac{n_B^2 a_B}{V^2}
\]

\[
P_i = \sum_{i=1}^{n} P_i = RT\left(\frac{n_A}{V - n_A b_B} + \cdots\right) - \frac{1}{V^2} \left(n_A^2 a_A + \cdots\right)
\]

ب) متوسط ثابت ها در معادلات حالت

به عنوان مثال برای معادله واندروالس داریم:

\[
b_{mix} = b_A y_A + b_B y_B + \cdots
\]

\[
a_{mix}^1 = a_A^1 y_A + a_B^1 y_B + \cdots
\]

\[
(P + \frac{n_i^2 a_{mix}}{V^2})(V - n_i b_{mix}) = n_i RT
\]

ج) متوسط ضریب تراکم پذیری

در انجا ضریب تراکم پذیری برای هر جزء از مخلوط بطور جداگانه از گراف‌ها بدایا می‌شود و می‌باشد

\[
PV = ZnRT
\]

\[
Z_m = Z_A y_A + Z_B y_B + \cdots
\]

از آنجایی که \(Z \) تابعی از فشار و دمای نقطه‌ای است لازم است فشاری که جهت تعیین \(P \) رود انتخاب شود.
ج- ۱) (کاربرد قانون دالتون) برای هر سازنده Z و فشار جزيی نقطه محاسبه می کنیم.

<table>
<thead>
<tr>
<th>جزء</th>
<th>منشآت بحرانی</th>
<th>P_r</th>
<th>T_r</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T_{c_A}, P_{c_A}</td>
<td>$\frac{P_A}{P_{c_A}}$</td>
<td>$\frac{T}{T_{c_A}}$</td>
<td>Z_A</td>
</tr>
<tr>
<td>B</td>
<td>T_{c_B}, P_{c_B}</td>
<td>$\frac{P_B}{P_{c_B}}$</td>
<td>$\frac{T}{T_{c_B}}$</td>
<td>Z_B</td>
</tr>
<tr>
<td>C</td>
<td>T_{c_C}, P_{c_C}</td>
<td>$\frac{P_C}{P_{c_C}}$</td>
<td>$\frac{T}{T_{c_C}}$</td>
<td>Z_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z_m</td>
</tr>
</tbody>
</table>

بطور کلی:

$$P_{ri} = \frac{P_i}{P_{ci}} = \frac{P_i \cdot y_i}{P_{ci}}$$
(۲) (کاربرد قانون آمکاگات): برای هر سازنده Z، فشار نقطه‌ای کل انتخاب می‌کنیم.

![Diagram](image)

<table>
<thead>
<tr>
<th>جزء</th>
<th>مشخصات بحرانی</th>
<th>P_r</th>
<th>T_r</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T_{cA}, P_{cA}</td>
<td>$\frac{P}{P_{cA}}$</td>
<td>$\frac{T}{T_{cA}}$</td>
<td>Z_A</td>
</tr>
<tr>
<td>B</td>
<td>T_{cB}, P_{cB}</td>
<td>$\frac{P}{P_{cB}}$</td>
<td>$\frac{T}{T_{cB}}$</td>
<td>Z_B</td>
</tr>
<tr>
<td>C</td>
<td>T_{cC}, P_{cC}</td>
<td>$\frac{P}{P_{cC}}$</td>
<td>$\frac{T}{T_{cC}}$</td>
<td>Z_C</td>
</tr>
</tbody>
</table>

$$P_{ri} = \frac{P_i}{P_{ci}}$$

به طور کلی می‌توان نوشت:

$$P'_r = P_{cA} \cdot y_A + P_{cB} \cdot y_B + \cdots$$

$$T'_c = T_{cA} \cdot y_A + T_{cB} \cdot y_B + \cdots$$

$$P'_r = \frac{P}{P'_c}$$

$$T'_c = \frac{T}{T'_c}$$

سپس با استفاده از گراف مقادیر Z خواننده می‌شود.

در این حالت فقط یک بار نیاز است که از گراف‌ها استفاده شود.
در شکل زیر نموده ای از منحنی های عمومی تراکم پذیری را مشاهده می کنید که به صورت کیفی ترسیم شده است.

نکته ۱- در شکل فوق خطوط قرمز رنگ بیانگر \(T \) و خطوط سبز رنگ نشانگر \(V \) می باشند.

نکته ۲- بر روی محور افقی اعداد مربوط به \(P \) و بر روی محور عمودی اعداد مربوط به \(Z \) قید می گردد.

نکته ۳- در صورت مشخص بودن \(T \) و \(P \) به روش ترسیم شده ی آبی رنگ و در صورت مشخص بودن \(V \) به روش ترسیم شده ی سبز رنگ مقدار \(Z \) از نمودار خوانده می شود.

نکته ۴- نمودار فوق شماتیکی از منحنی های ضرب تراکم پذیری در فشارهای پایین می باشد.

نمودار های مربوط به فشارهای متوسط و بالا به گونه ای دیگر است اما طریقه ی کار با آنها مشابه

روش ذکر شده است. نموده ای از این نمودار ها در صفحات ۲۹۷ تا ۳۰۱ کتاب موجود می باشد.
مثال: ترکیب نسیمی یک مخلوط گاز بصورت زیر است:

\[N_2 : 50\% \]
\[C_2H_4 : 30\% \]
\[CH_4 : 20\% \]

مخلوط در دمای 100 درجه سانتی‌گراد و فشار 90 آتمسفر قرار دارد. حجم مولی مخلوط را با استفاده از روش‌های زیر محاسبه و مقایسه کنید:

الف) قانون گازهای کامل
ب) معادله واتندرو بالس + قانون دالتون
ج) معادله واتندرو بالس با استفاده از متوسط ثواب معادله
د) ضریب متوسط تراکم یافته و قانون دالتون
ه) ضریب متوسط تراکم پذیری و قانون آماگات
و) مقادیر شب بحرانی

<table>
<thead>
<tr>
<th>ماده</th>
<th>(a\text{[atm} \times \text{cm}^3\text{/gmole)}^2]</th>
<th>(b\text{[cm}^3\text{/gmole]})</th>
<th>(T_c\text{(K)})</th>
<th>(P_c\text{(atm)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH_4)</td>
<td>2.25\times10^6</td>
<td>42.8</td>
<td>191</td>
<td>45.8</td>
</tr>
<tr>
<td>(C_2H_6)</td>
<td>4.48\times10^6</td>
<td>57.2</td>
<td>283</td>
<td>50.9</td>
</tr>
<tr>
<td>(N_2)</td>
<td>1.35\times10^6</td>
<td>38.6</td>
<td>126</td>
<td>33.5</td>
</tr>
</tbody>
</table>

حل:
چون گفته شده حجم مولی را بدست آوریم پس \(n=1\) خواهند بود.

\[R = 82.06\frac{\text{cm}^3\text{atm}}{\text{gmole}\text{K}} \]

\[PV = nRT \quad \Rightarrow \quad P\dot{V} = RT \Rightarrow \dot{V} = \frac{RT}{P} \]

\[\dot{V} = 82.06\frac{\text{cm}^3\text{atm}}{\text{gmole}\text{K}} \times 373K = 340\frac{\text{cm}^3}{\text{gmole}} \]
(ب) معادله واندرولاس + قانون دالتون:

\[
P = \left(\frac{n_{CH_4}RT}{V - n_{CH_4}a_{CH_4}} + \frac{n_{C_2H_6}RT}{V - n_{C_2H_6}a_{C_2H_6}} + \frac{n_{N_2}RT}{V - n_{N_2}a_{N_2}} \right) - \left(\frac{n_{CH_4}^2a_{CH_4}}{V^2} + \frac{n_{C_2H_6}^2a_{C_2H_6}}{V^2} + \frac{n_{N_2}^2a_{N_2}}{V^2} \right)
\]

\[
90 = \left(\frac{0.2 \times 82.06 \times 373}{V - 0.2 \times 42.8} + \frac{0.3 \times 82.06 \times 373}{V - 0.3 \times 57.2} + \frac{0.5 \times 82.06 \times 373}{V - 0.5 \times 37.6} \right) - \frac{0.2^2 \times 0.25 \times 10^6 + 0.3^2 \times 4.48 \times 10^6 + 0.5^2 \times 1.35 \times 10^6}{V^2}
\]

با ساده سازی نهایتاً معادله به فرم زیر خواهد شد که به روش سعی و خطای قابل حل است.

\[
P \hat{V} = A \hat{V}^3 + B \hat{V}^2 + C \hat{V} + D = 0 \Rightarrow \hat{V} = 332 \text{ cm}^3 / \text{g mole}
\]

(ج) معادله واندرولاس با استفاده از متوسط ثوابت معادله

\[
\bar{a} = \frac{y_{CH_4}a_{CH_4}^\frac{1}{2} + y_{C_2H_6}a_{C_2H_6}^\frac{1}{2} + y_{N_2}a_{N_2}^\frac{1}{2}}{y_{CH_4} + y_{C_2H_6} + y_{N_2}}
\]

\[
\Rightarrow \bar{a} = 0.2(2.25 \times 10^6) + 0.3(4.48 \times 10^6) + 0.5(1.35 \times 10^6)
\]

\[
= 2.3 \times 10^6
\]

\[
\bar{b} = y_{CH_4}b_{CH_4} + y_{C_2H_6}b_{C_2H_6} + y_{N_2}b_{N_2}
\]

\[
\Rightarrow \bar{b} = 0.2(42.8) + 0.3(57.2) + 0.5(38.6) = 45
\]

\[
(P + \frac{1}{2} \times \frac{\bar{a}}{\hat{V}^2})(\hat{V} - 1 \times \bar{b}) = RT
\]

\[
\Rightarrow (90 + \frac{2.3 \times 10^6}{\hat{V}^2})(\hat{V} - 45) = 82.06 + 373 \Rightarrow \hat{V} = 316 \text{ cm}^3 / \text{g mole}
\]
ضریب متوسط تراکم پذیری و قانون دالتون

\[
\text{ماده} \quad T_c (K) \quad P_c \quad \frac{T_v}{T_c} \quad \frac{P_{r}}{P_{c}} \quad Z \quad y_i\cdot Z_i
\]

\[
\begin{align*}
\text{CH}_4 & : 191 \quad 45.8 \quad \frac{373}{191} = 1.95 \quad \frac{90 \times 0.2}{45.8} = 0.39 \quad 0.99 \quad 0.2 \times 0.99 \\
\text{C}_2\text{H}_6 & : 283 \quad 50.9 \quad \frac{373}{283} = 1.32 \quad \frac{90 \times 0.3}{50.9} = 0.53 \quad 0.93 \quad 0.3 \times 0.93 \\
\text{N}_2 & : 126 \quad 33.5 \quad \frac{373}{126} = 2.96 \quad \frac{90 \times 0.5}{33.5} = 1.34 \quad 1 \quad 0.5 \times 1
\end{align*}
\]

\[Z_m = 0.977, n = 1\]
\[\Rightarrow P \hat{V} = Z_m RT \Rightarrow \hat{V} = \frac{Z_m \cdot RT}{P} = \frac{0.9777 \times 82.06 \times 373}{90} = 332 \text{ cm}^3 \text{ gmole}^{-1}\]

ضریب متوسط تراکم پذیری و قانون آمکات

\[
\begin{align*}
\text{ماده} & \quad T_c (K) \quad P_c \quad \frac{T_v}{T_c} \quad \frac{P_{r}}{P_{c}} \quad Z \quad y_i\cdot Z_i
\end{align*}
\]

\[
\begin{align*}
\text{CH}_4 & : 191 \quad 45.8 \quad \frac{373}{191} = 1.95 \quad \frac{90 \times 0.2}{45.8} = 0.197 \quad 0.97 \quad 0.194 \\
\text{C}_2\text{H}_6 & : 283 \quad 50.9 \quad \frac{373}{283} = 1.32 \quad \frac{90 \times 0.3}{50.9} = 0.78 \quad 0.75 \quad 0.225 \\
\text{N}_2 & : 126 \quad 33.5 \quad \frac{373}{126} = 2.96 \quad \frac{90 \times 0.5}{33.5} = 2.68 \quad 1.01 \quad 0.505
\end{align*}
\]

\[Z_m = 0.924, n = 1\]
\[\Rightarrow P \hat{V} = Z_m RT \Rightarrow \hat{V} = \frac{Z_m \cdot RT}{P} = \frac{0.924 \times 82.06 \times 373}{90} = 313 \text{ cm}^3 \text{ gmole}^{-1}\]

و مقادیر شبیه بحرانی

\[
P' = y_{CH}_4 P_{cCH}_4 + y_{C}_2\text{H}_6 P_{cC}_2\text{H}_6 + y_{N}_2 P_{cN}_2
\]
\[
= 0.2 \times 45.8 + 0.3 \times 50.9 + 0.5 \times 33.5 = 41.2 \text{ atm}
\]
\[
T' = y_{CH}_4 T_{cCH}_4 + y_{C}_2\text{H}_6 T_{cC}_2\text{H}_6 + y_{N}_2 T_{cN}_2
\]
\[
= 0.2 \times 191 + 0.3 \times 283 + 0.5 \times 126 = 186 \text{ K}
\]
فشار بخار (مهم)

تعاریف بخار: به گازی که در دمای آن یک مولکول یک ماده ی خالص ایجاد می شود فشار بخار آن ماده نامیده می شود (فشار بخار تابع دما و جنس ماده است)

- تبخیر و میعان در فشار و دمای ثابت تحولاتی تعادلی هستند و فشار حالت تعادل را فشار بخار می گویند.

- جانبه یک جسم را در یک سیستم بسته قرار دهیم در اثر تبخیر ذرات آن جسم فشار سیستم افزایش می یابد تا در یک نقطه به حالت تعادل پررسد این فشار را فشار بخار گویند.

هرچند پوئنذ ذرات ماده ضعیف تر جنبه ذرات پیشتر و فراوریت ماده نیز پیشتر باشد، فشار بخار آن نیز پیشتر است. با افزایش دما بدلیل افزایش جنب و جوش ذرات فشار بخار نیز افزایش می یابد.

- با استفاده از معادله آنیوئن در ضمیمه G می توان فشار بخار هر ماده را در دمای دلخواه بدست آورد.

$$p' = \frac{p}{P_c} = \frac{90}{41.2} = 2.18$$

$$T' = \frac{T}{T_c} = \frac{373}{186} = 20$$

$$\Rightarrow Z_m = 0.97$$

$$\Rightarrow PV = Z_m RT \Rightarrow \hat{V} = 328 \text{ cm}^3 \text{ mole}^{-1}$$
حفظ جوش: دمایی که در آن فشار بخار جسم با فشار محیط اطرافش برابر می‌شود.

حفظ جوش نرمال: حفظ جوش در فشار یک آنسفر را نقطه ی حفظ نرمال می‌نامند.

شکل زیر را در مورد مقایسه ی فشار بخار ماده آب، اتیل الكل و اتیل اتر در نظر بگیرید:

![Diagram of boiling point and dew point comparison](image)

همانگونه که مشاهده می‌شود هرچند ماده فراورتر باشد فشار بخار آن نیز بیشتر است و ضمانتاً این گراف می‌توان نتیجه‌گیری کهد حفظ جوش اتیل الكل و اتیل اتر در سطح دریا به ترتیب 78و34 درجه سانتی‌گراد می‌باشد.

با استفاده از این گراف ها می‌توان نقطه حفظ مواد را در فشارهای مختلف پیش بینی کرد.

تذکر: از تغییر فشار بخار در اثر تغییر فشار صرف نظر می‌کنیم.

پیش از کردن فشار بخار: یکی از راه‌های پیش از کردن فشار بخار استفاده از گراف‌ها و راه دوم استفاده از معادله‌های تجربی مانند معادله آتیو می باشد که در ضمیمه G کتاب هیمل بلاو ضرایب آن موجود می‌باشد.

 نقطه ی حباب (Buble Point):

همگامی که اولین حباب بخار در اثر اولین جوشش به وجود می‌آید دما نقطه ی حباب می‌نامند.

 نقطه ی شبنم (Dew point):

در عمل معنی‌های که در آن دما اولین نقطه مایع بوجود می‌آید را نقطه شبنم می‌گویند.
نکته ۱ - از نقطه ی ۱ تا ۲ گاز می‌دهیم صرف بالا رفتن دمای جسم می‌شود که جنون آن را با افزایش دمای دما سنج می‌کنیم که گرمای محصول نامیده می‌شود.

نکته ۲ - در نقطه ۲ اولین نقطه ی مایع بوجود می‌آید و از آن پس گرمایی که جاده می‌شود صرف ذوب شدن می‌گردد. بنابراین افزایش دمای دما، اینکه تمام ماده ذوب می‌شود. جنون اثر این گرمای را با دمای سنج مشاهده می‌نماییم که گرمای نهان می‌نماید.

نکته ۳ - در طول عملیات ذوب دما ثابت است و همچنین دمای فاز مایع یا جامد با هم برابر اند، لذا نوعی تعادل نرمودینامیکی بین این دو فاز برقرار است.

نکته ۴ - دمای ذوب هر جسم (مثلاً دمای جوش یا فشار آن است) به شکل واضح اندازه گیری می‌شود.

نکته ۵ - اگر روی منحنی ها فارار بگیریم دوای سیستم دو فازی هستیم (به جز در لحظات آغاز و پایان تغییرات) و هر دو فاز دست در تغییرات تعادل می‌کند و فشار در هر دو فاز، به هم می‌پردازد.

نکته ۶ - اگر در نواحی دیگر منحنی ها فارار بگیریم فقط دارای یک فاز هستیم.

نکته ۷ - در نقطه ی سه گانه فاز گرمای می‌باشد، مایع و جامد با هم در تعادلند.

نکته ۸ - وقتی آخرین نقطه جاده مایع تبدیل شد وارد ناحیه مایع می‌شود و از آن پس افزایش گرمایی باعث افزایش مایع می‌شود (گرمای محصول).

نکته ۹ - هنگامی که به منحنی تبخر بروید منحنی کنیم (نقطه ۳) اولین حباب بخار به وجود می‌آید دمای آن را دما جوش می‌نامند.

نکته ۱۰ - در نقطه ۲ نیز افزایش دما متوقف می‌شود و گرمایی داده شده صرف عمل تبخر می‌شود (گرمایی نهان).
نکته 11- در نقطه ۳ فاز مایع و بخار وجود دارد که باز هم یا یکدیگر در حال تعادلند یعنی دما و فشار یکسان دارند.
نکته ۲۲- وقتي آخرين قطره مایع نيز تبخير شد وارد ناحيه بخار مي شود و از آن پس افزایش گرما باز هم افزایش دما را در پي خواهد داشت.

حالات اشباع

نقاط موجود بر روی هر كدام از سه منحنی فوق را نقاط حالات اشباع مي نامند.
چنانچه منحنی تبخير را انتخاب كنيم:
(1) أكثر قريه آيندهي مهندسي شيمي مربوط به اين منحنی است ، ضمناً اگرچه محور های P و T عوض كنیم منحنی زیر حاصل خواهد شد.

با توجه به منحنی فوق سه حالت وجود دارد:
(1) حالات اشباع: نقاطی که روي منحنی قرار دارند
(2) مايع مادون اشباع: نقاطی که زيبر منحنی اشباع قرار دارند. به اين حالت مایع مراکم، مایع مادون sub cold و حالات
(3) بخار مافوق گرم: نقاطی که بالاي منحنی اشباع قرار مي گيرند. به اين حالت بخار مافوق اشباع،

ما فوق گرم و بخار super heat
در حالت اشباع از آنجایی که در سیستم هم فاز مایع و هم فاز بخار وجود دارد مقدار x یافت شود.

$$ x = \frac{m_g}{m_g + m_f} $$

در رابطه قبل m_g جرم بخار و m_f جرم مایع می‌باشد.

ارتباط x با حجم مخصوص مایع و بخار اشباع:

$$ V_g = m_g \cdot v_g $$
$$ V_f = m_f \cdot v_f $$

$$ V_t = V_f + V_g = m_f \cdot v_f + m_g \cdot v_g $$

$$ V_t = \frac{V_t}{m_t} = \frac{m_g v_g}{m_g + m_f} + \frac{m_f v_f}{m_g + m_f} $$

$$ \Rightarrow V_t = x \cdot v_g + (1 - x) \cdot v_f $$

همچنین می‌توان نوشت:

$$ h = x h_g + (1 - x) h_f $$

مثال: چنانچه در یک سیستم دو fazی از آب که در آن مایع و بخار به تعادل رسیده اند و دماسنج دمای 78 درجه ی فارنهایت را نشان می‌دهد مقدار 100 پوند آب از قبل در آن ریخته باشیم و حجم ظرف نیز 10000 فوت مکعب باشد آنتالپی کل ظرف را بدست آوریم.

$$ T = 78 \, ^{\circ} F $$
$$ h_f = 46.03 \, \frac{Btu}{lb} $$
$$ h_g = 1094.9 \, \frac{Btu}{lb} $$
$$ v_f = 0.0160 \, \frac{ft^3}{lb} $$
$$ v_g = 674.4 \, \frac{ft^3}{lb} $$
$$ m_t = 100 \, lb $$
$$ V_i = 10000 \, ft^3 $$

$$ v = \frac{V}{m} = \frac{10000}{100} = 100 \, \frac{ft^3}{lb} $$
\[v = (1 - x) \cdot v_f + x \cdot v_g \Rightarrow 100 \cdot \frac{ft^3}{lb} = (1 - x)0.01607 + x \cdot 0.676 \cdot 6 \cdot \frac{ft^3}{lb} \]
\[\Rightarrow x = 2.2 \times 10^{-4} \]
\[h = x h_g + (1 - x) h_f \]
\[h = 2.2 \times 10^{-4} \cdot (1094 \cdot 9 \cdot \frac{Btu}{lb}) + (1 - 2.2 \times 10^{-4}) \cdot (46.09 \cdot \frac{Btu}{lb}) = 46.26 \cdot \frac{Btu}{lb} \]

عدد بدست آمده آنتالپی به ازای یک پوند را نشان می‌دهد. برای محاسبه ی آنتالپی کل داریم:
\[H_{total} = 100 \times 46.26 = 4626 \text{ Btu} \]

جدول بخار اشباع (مهم)

جدول به‌کمک دینامیکی بر سه نوعند:
الف. جدول اشباع
ب. جدول مایع مادون اشباع
ج. جدول بخار مافوق اشباع

دو جدول آخر عیان جدول بخار مافوق اشباع و مایع مادون سرد در درس ترمودینامیک بررسی خواهد شد. در این مبحث فقط جدول اشباع آب را بررسی می‌کنیم.

شماتیکی از جدول بخار اشباع (ضمیمه C کتاب)

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
<th>V_f</th>
<th>V_fg</th>
<th>V_g</th>
<th>h_f</th>
<th>h_fg</th>
<th>h_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما</td>
<td>فشار</td>
<td>حجم مخصوص</td>
<td>حجم مخصوص</td>
<td>حجم آنتالپی</td>
<td>کرمای</td>
<td>آنتالپی</td>
<td>بخار اشباع</td>
</tr>
</tbody>
</table>

\[V_{fg} = V_g - V_f \]
\[h_{fg} = h_g - h_f \]

تذکر:

www.ShimiPedia.ir
نکته ۱ - چون دما و فشار جز خواص شدتی هستند و طبق قوانین ترمودینامیک چنانچه دو نکته جسم ثابت باشند سایر خواص نیز ثابت می‌شوند. می‌توان در جدول بخار روبروی هر دما و فشار معین، سایر خواص شدتی را نیز لیست کرد.

نکته ۲ - اگر دما و فشاری که از جدول اشاع می‌خواهیم باخوانیم در آن وجود نداشت می‌باشت دورنابایی کنید.

نکته ۳ - اگر روی منحنی اشاع قرار ندایش باشیم (مادون اشاع و یا مافوق اشاع) به یک سری جدول دیگر نیاز است که در درس ترمودینامیک بررسی می‌شوند.

نکته ۴ - در صورت بروخورد با مادون مادون اشاع می‌توان بطور تقریبی از خواص مایع اشاع در همان دما استفاده کرد.

مثال: جنتانچه پنده در یک ظرف سوخته قرار دهید و آنقدر حرارت دهید که فقط ۱۰\% آن بصورت مایع باقی بماند و ضمناً تعدادی مایع و بخار در دمای ۶۰ درجه فارنهایت حاضر شده باشد. آنتانی کل ظرف را بدست آورید.

\[
H_{\text{total}} = H_{\text{liquid}} + H_{\text{vapor}} = m_f h_f + m_g h_g = \\
0.5 \times 27.07 + 4.5 \times 1087.2 = 4906.41 \text{ Btu}
\]

مثال: آنتانی مخصوص آب مایع اشاع در ۶۱ درجه فارنهایت را با استفاده از اطلاعات جدول بخار اشاع آب بدست آورید.

\[
X = 60 \rightarrow Y_1 = 28.07 \\
X_2 = 62 \rightarrow Y_2 = 30.06 \\
Y - Y_1 = Y_2 - Y_1 \frac{X - X_1}{X_2 - X_1} \\
\Rightarrow Y = 28.07 = \frac{30.06 - 28.07}{62 - 60} (X - 60) \\
\Rightarrow Y = 0.995 X - 31.63 \quad \frac{X = 61}{\text{Btu}} \quad Y = 29.335 \quad \frac{\text{lb}}{}
\]

تذکر: عملیات دوتروپی را می‌توان به کمک مشاهدات حساب به سادگی و با خطای کمتری انجام داد.
تشخیص حالت اشباع (یا مادون اشباع و یا مافوق اشباع)

برای تشخیص این موضوع می‌توان بطور کلی گفت هر عاملی که به بلند شدن بخار در سیستم کمک
کند حالت سیستم را به سمت مافوق گرم و در جهت خلاف آن به سمت مادون سرد بپیش می‌برد. به
عنوان مثال آگر در مسئله ای دما و فشار داده شود و دما را در جدول اشباع پیدا کنیم چنانچه فشار مسئله
از فشار روی آن دما کمتر باشد نشان دهنده حالت مافوق اشباع است و یا آگر فشار مسئله را در
جدول اشباع پیدا کنیم و دمای مسئله از دمای اشباع بیشتر باشد نشان دهنده حالت مافوق
اشباع است. در خلاف این صورت حالت مادون اشباع داریم.

بنابراین یکی از داده‌ها را روی جدول اشباع فیکس می‌کنیم و داده‌ی دیگر را به عنوان متغیر با عددهای
درون جدول مقایسه می‌کنیم. اگر داده‌های متغیر جزء خواصی از سیستم باشد که f یا g دارد مثل
(f = v و g = (f(v)) چنانچه داده‌ی مسئله از تغییر f در جدول کمتر باشد دارای حالت مادون سرد هستند. اگر
پوزشی تر از داده f باشد دارای حالت مافوق گرم هستند و اگر بین این دو باشد دارای مخلوط بخار و
مایع هستند.
ابتدا مول فشار، حجم، هوا و بخار آب

اگر هوا و بخار آب را بصورت مخلوط با یکدیگر داشته باشیم و ویژگی‌های آنها را مخلوط با یک گاز

ایده آل فرض کنیم در این صورت هوا را هوای مرطوب نامیده و ارتباط زیر بین پارامتر آن برقرار

خواهد بود:

\[
P_{\text{air}} \frac{P_{\text{H}_2\text{O}}}{n_{\text{air}}} \Rightarrow V_{\text{air}} \frac{V_{\text{H}_2\text{O}}}{n_{\text{H}_2\text{O}}}
\]

\[
\frac{P_{\text{air}}}{P_{\text{H}_2\text{O}}} = \frac{y_{\text{air}} P_t}{y_{\text{H}_2\text{O}} P_t} \quad (1) \quad \Rightarrow \quad \frac{P_{\text{air}}}{P_{\text{H}_2\text{O}}} = \frac{n_{\text{air}}}{n_{\text{H}_2\text{O}}}
\]

\[
(1), (2) \quad \Rightarrow \quad \frac{P_{\text{air}}}{P_{\text{H}_2\text{O}}} = \frac{P_{\text{air}}}{P_t - P_{\text{air}}} = \frac{V_{\text{air}}}{V_f - V_{\text{air}}}
\]

مثال: در 400K و 2.45Kpa حجم ویژه ی یک بخار مرطوب 0.50 مترمکعب بر کیلوگرم

می‌باشد کیفیت بخار چیست؟

\[
\alpha F = 1.8^{\circ} C + 32 = 1.8(100 - 273) + 32 = 260.6^{\circ} F
\]

\[
0.505 \frac{m^3}{kg} \left| \frac{0.454 \text{ Kg}}{1 \text{ lbm}} \right| \left| \frac{35.3 \text{ ft}^3}{1 \text{ m}^3} \right| = 8.09 \frac{\text{ ft}^3}{\text{ lbm}}
\]

<table>
<thead>
<tr>
<th>(T)</th>
<th>(V_f)</th>
<th>(V_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>0.01708</td>
<td>11.771</td>
</tr>
<tr>
<td>260.6</td>
<td>0.017086</td>
<td>11.66384</td>
</tr>
<tr>
<td>265</td>
<td>0.01713</td>
<td>10.875</td>
</tr>
</tbody>
</table>

با دستورالعمل خطي

\[
V = x v_g + (1 - x) v_f \Rightarrow 8.09 = x (11.66384) + (1 - x)(0.017086) \Rightarrow x = 0.69
\]
مثال: حداقل حجم هوای خشک بر حسب متر مکعب در 20 درجه سانتی‌گراد و 100 کیلوپاسکال را برای 6 کیلوگرم الكل لازم است را بدست آورید. در صورتی که فشار ثابت و برابر 100 کیلوپاسکال بوده و فشار بخار الكل در 20 درجه سانتی‌گراد نیز 5.93 کیلوپاسکال باشد، جرم مولکولی الكل را تخمین زنید.

\[P_i = 100 \text{Kpa} \quad T = 20 \degree C \]

\[P_i = P_{\text{air}} + P_{\text{alch}} \Rightarrow P_{\text{air}} = 100 - P_{\text{alch}} = 100 - 5.93 = 94.07 \text{Kpa} \]

\[\frac{P_{\text{air}}}{P_{\text{alch}}} = \frac{n_{\text{air}}}{n_{\text{alch}}} \Rightarrow n_{\text{air}} = \frac{6.49 \times 94.07}{5.93} = 2.07 \text{Kmole} \]

\[P_{\text{air}} \cdot V_{\text{air}} = n_{\text{air}} RT \Rightarrow V_{\text{air}} = \frac{2.07 \times 10^3 \times 8.314 \times 293}{94.07 \times 10^3} = 53.06 \text{m}^3 \]

تعادل گاز - مايع در سیستم های چندتاپی (V.L.E)

قانون راولت

\[P_i = P_i^* \cdot x_i \]

از قانون دالتون دانستیم: \[P_i = P_t \cdot y_i \]

از قانون دالتون و راولت می‌توان نتیجه گرفت:

\[P_i^* x_i = P_i \cdot y_i \]
مثال: فشار بخار تولوتن و اورترزاپین دو درجه 90 درجه سانتیگراد داده شده است. اگر فشار جو 60474.0 باد که ترکیب محلول را از 90 درجه می‌جوشد حساب کنید. ترکیب بخار تولوتن شده را نیز بدست آورید.

\[P_t^* = 400 \text{ mmHg} \]
\[P_o^* = 150 \text{ mmHg} \]

\[P_{total} = P_t + P_o = x_t \cdot P_t^* + x_o \cdot P_o^* = x_t P_t^* + (1 - x_t) \cdot P_o^* \]

\[\Rightarrow \frac{760}{2} = 400 \cdot x_t + (1 - x_t) \cdot 150 \Rightarrow \begin{cases} x_t = 0.92 \\ x_o = 0.08 \end{cases} \]

\[\begin{cases} P_t = y_t \cdot P_{total} \\ P_t = x_t \cdot P_t^* \Rightarrow y_t \cdot P_{total} = x_t \cdot P_t^* \Rightarrow y_t = \frac{0.92 \times 400}{760} = 0.968 \end{cases} \]

\[\Rightarrow y_o = 1 - y_t = 0.032 \]

تذکر: چنین جمله‌ای توانایی قانون را نشان دهنده باشد خطای قانون را نشان دهنده باشد. قانون هنوز استفاده کرد.

نکته: با استفاده از تابع تابعی که تابعی بنا به تابعی مشابه همچون گراف زیر رسم نمود.

\[T \]

\[y_i \]

\[0 \quad 1 \]

\[x_i \]

\[0 \quad 1 \]

نکته: ثابت تعادل در سیستم‌های تعادلی بخار مایع به شکل زیر برای هر ماده تعیین می‌شود که

\[K_i = \frac{y_i}{x_i} \]

www.ShimiPedia.ir
قانون رانولدت در مواردی که بیوندین اجزا با یکدیگر تفاوت فاحشی داشته باشد و یا اینکه یک ماده خیلی رقیق باشند دارای خطای زیادی است.

مثال: می خواهیم مخلوطی از نرمال هیتان را در فاز مایع تبیخ کنیم ترکیب نسبی حاصل از بخار را در حالت تعادل تعیین کنیم. در صورتی که فشار کل $1 atm$ و ثابت و دمای حالات تعادل 121 درجه سانتی‌گراد فرض شود از تلفیق قانون رانولدت و دالتون داریم:

$$P = 1 atm \quad T = 121 ^\circ C$$

با استفاده از ضرایب معادله آنتونی بندست خواهد آمد که با جایگذاری در رابطه G کتاب ضرایب معادله آنتونی بندست خواهد آمد که با جایگذاری در رابطه G

$$\ln P^* = A - \frac{B}{T + C}$$

آنباک ($$ln P^* = A - \frac{B}{T + C}$$ دستگاه معادلات فوک قابل حل خواهد بود.

قانون هنری

$$P_i = H_i \cdot x_i$$

ثابت هنری است که در صورت مشابه داده می‌شود. H_i

از تساوی قانون هنری و دالتون می‌توان نتیجه گرفت:

$$H_i \cdot x_i = P_i \cdot y_i$$

توجه: محول های رقیق ایده آل محول هایی هستند که جرات از رابطه i رانولدت و حل شونده از رابطه i هنری تبعیت می‌کنند.
اشباع جزئی
چنانچه به دلیل کمبود وقت دو فاز مايع و بخار را نتوانیم به اندازه ای با هم تماس دهیم که حالت اشباع حاصل شود به اشباع کامل نخواهیم رسید و آن را اشباع جزئی می‌نامیم.

\[P_A < P_A^* \]

در حالت اشباع داریم \(P_A = P_A^* \) اما در حالت واقعی بدلیل نبود زمان کافی نخواهیم داشت.

در این حالت اشباع جزئی رخ داده است.

طرحه بیان اشباع جزئی

1- اشباع نسبی:

\[\frac{P_A}{P_A^*} \]

2- اشباع مولی:

\[\frac{P_A}{P_I - P_A} \]

3- اشباع مطلق:

\[\frac{P_A}{P_A^*} \]

که بیانگر نسبت اشباع مولی به اشباع مولی در حالت تعادل می‌باشد.

نکته: چنانچه گازی که می‌خواهیم بپذیریم ذرات تبخیر شده باشدها و ماده ای که می‌خواهیم تبخیر کنیم آب باشد، در تمام عبارات فوق از کلمه رطوبت استفاده می‌کنیم.
فصل چهارم:
موازنه اتربی
تعیین انرژی

استعداد تأثیر گذاری یک سیستم بر روی محیط خودش را انرژی آن سیستم می‌گویند.

انواع اصلی انرژی عبارتند از:

- گرمایی (Q)
- کار (W)
- انرژی داخلی (درونی) (U)
- انرژی پتانسیل (Ep)
- انرژی جنبشی (Ek)

کار (W)

کار از دیدگاه مکانیک حاصل‌ضرب نیرو در جابجایی است. (W=F.dl) یا (W=F.dl) ولی از دیدگاه ترمودینامیک کار شامل انرژی در حال انتقال به یکی سیستم یا از یک سیستم است بر اثر هر فرآیندی بطوریکه بتوان اثر خارجی آن را با مکانیزم‌های اصطکاک فرضی بطور کامل بر اثر بلند کردن یک جرم در یک میدان گرانشی بیان کرد.

\[
W = F \cdot l \\
\frac{dW}{dl} = F \\
P = \frac{F}{A} \quad \Rightarrow \quad F = P \cdot A
\]

\[
V = A \cdot l \\
\frac{dV}{dl} = A \\
\frac{dW}{dl} = P \cdot A \times \frac{dV}{A} \quad \Rightarrow \quad dW = P \cdot dV
\]

\[
\Rightarrow \quad W = \int_{V_1}^{V_2} P \cdot dV
\]
گرمای (Q)

گرمای شکلی از انرژی در حال حرکت است که در اثر اختلاف دما بوجود می‌آید.

\[Q = mC \Delta T \]

ظرفیت گرمایی و وزن جسم (C): مقدار گرمایی لازم برای تغییر دمای واحد جرم به میزان 1 درجه

دیمانسون:

\[[C] = \frac{[Q]}{[m][T]} \]

SI: \(C \frac{j}{kg \cdot ^\circ C} \)

Eng: \(C \frac{Btu}{lbm \cdot ^\circ F} \)

انواع ظرفیت گرمایی:

ظرفیت گرمایی و وزن در فشار ثابت: \(C_p \)

ظرفیت گرمایی و وزن در حجم ثابت: \(C_v \)

تابعیت:

تابعیت از دما و فشار است \(C \)

نکته 1- در فشار ثابت فقط دما است.

نکته 2- تا هنگام آن گفته نشده \(C_p \) را در نظر می‌گیریم.

لذا داریم: \(C_p = f(T) \)

برای برخی مواد به صورت زیر بدست می‌آید:

\[C_p = \alpha + \beta T + \gamma T^2 \]

و برای برخی دیگر:

\[C_p = a + bT + cT^{-2} \]
ضرایب ناشی هستند که برای هر ماده بوسیله آزمایش مشخص می‌شوند و در ضمیمه کتاب موجود هستند.

de: T

\[Q = m \cdot C \cdot \Delta T \]
\[dQ = d \left(m \cdot C \cdot T \right) \]

\[dQ = m \cdot C \cdot dT \]
\[\int dQ = \int m \cdot C \cdot dT \]
\[Q = m \int_{T_1}^{T_2} C \cdot dT \]

چون تابع \(C \) ناپایدار است، برای حل این مناسب، این سیگنال باز نمایش داده شود و به‌طور معمول یک کیلوگرم در جسمی با طوفان حرارتی \(C = \alpha + \beta T + \gamma T^2 \) از آن را از \(T_2 \) به \(T_1 \) بررسی می‌کنیم:

\[
Q = m \int_{T_1}^{T_2} (\alpha + \beta T + \gamma T^2) dT = m[\alpha(T_2 - T_1) + \frac{\beta}{2}(T_2^2 - T_1^2) + \frac{\gamma}{3}(T_2^3 - T_1^3)]
\]

انرژی داخلی:

مجموع انرژی های پتانسیل و جنبشی ذرات میکروسکوپی بر هر جسم را انرژی داخلی آن جسم می‌نامند.

\[C_v = \left(\frac{du}{dT} \right)_v \]
\[\frac{du}{dT} = C_v \]
\[du = C_v \cdot dT \]

\[\Rightarrow \quad \Delta u = \int_{T_1}^{T_2} C_v \cdot dT \]
از آنجایی که انتزاعی داخلی هیچ‌گاه صفر نمی‌شود بنابراین میزان صفر آن مشخص نیست و برای حل
این مشکل از یک دمای مبنا فرضی استفاده می‌شود.

آنتالپی

همان انتزاعی داخلی با احتساب کار میکروسکوپی گرفته شده با داده شده

\[h = u + PV \]

\[C_p = \left(\frac{dh}{dT} \right)_p \quad dh = C_p . dT \]

\[\Delta h = \int_{T_1}^{T_2} C_p dT \]

dمای مبنا و ... برای h هم صادق است.

مثال:

الف) با استفاده از ضمیمه E آخر کتاب معادله (ظرفیت حرارتی گاز متان را پنوسید.

ب) اگر دمای گاز متان از 100 درجه سانتی‌گراد به 500 درجه سانتی‌گراد افزایش یابد تغییر آنتالپی گاز متان را محاسبه کنید.

الف:

\[C_p = a + b(T) + c(T)^2 + d(T)^3 \]

\[C_p = 34.31 + 5.469 \times 10^{-2} T + 0.3661 \times 10^{-5} T^2 - 11 \times 10^{-9} T^3 \]
ب:

\[
\Delta h = \int_{100}^{500} \left(34.31 + 5.469 \times 10^{-2} T + 0.3661 \times 10^{-5} T^2 - 11 \times 10^{-9} T^3 \right) dT
\]

\[
\Rightarrow \Delta h = 20266 \cdot 52133 \quad \text{gmole}^{-1}
\]

روش‌های به کار رفته در مثال فوق بهترین روش‌ها برای محاسبه ی ظرفیت حرارتی و آنتالپی هستند. ولی در صورت عدم وجود جنین اطلاعاتی از یک سری روابط تجربی که دقت کمتری دارند، می‌توان بهره برده و

انرژی پتانسیل

\[
E_p = m \cdot g \cdot z
\]

انرژی جنبشی

\[
E_k = \frac{1}{2} m \cdot v^2
\]

تذکر: انرژی‌های در حال حرکت هستند و به عبارتی دیگر چنانچه انرژی بخواهد از یک نقطه به نقطه ی دیگر منتقل شود بوسیله ی این دو خواهند بود. درحالیکه انرژی داخلی (آنتالپی) و انرژی‌های جنبشی و پتانسیل انرژی‌های قابل ذخیره سازی هستند و چنانچه انرژی بخواهد در سیستمی ذخیره شود می‌باشد به‌طور کامل با این این سه صورت تبدیل گردد.
قانون اول ترمودینامیک

\[
\begin{array}{ll}
\Delta E_{\text{sys}} &= -\Delta E_{\text{surr}} \\
\Delta E_{\text{sys}} &= \Delta U + \Delta E_p + \Delta E_k \\
\Delta E_{\text{surr}} &= \pm Q \pm W \\
\end{array}
\]

\[\Rightarrow \Delta U + \Delta E_p + \Delta E_k = \pm Q \pm W\]

قرارداد: گرمایی داده شده به سیستم (+)، گرفته شده از سیستم (−)، کارانجام شده روي سیستم (−)

انجام شده توسط سیستم (+)

بیان ریاضی قانون اول ترمودینامیک

\[\Delta U + \Delta E_p + \Delta E_k = Q - W\]
فرم دیگری از قانون اول ترمودینامیک که برای سیستم‌های با مناسب تر است:

\[
W = \int PdV + W_s
= P \Delta V + W_s
\]

\[
\int PdV = \int_{P_1V_1}^{P_2V_2} d(PV) = P_2V_2 - P_1V_1
\]

\[
\Rightarrow Q - [(P_2V_2 - P_1V_1) + W_s] = \Delta U + \Delta E_p + \Delta E_k
\]

\[
\Delta U = U_2 - U_1
\]

پس می‌توان واپتی فوق را به شکل زیر بازنویسی کرد:

\[
Q - W_s = \left(\frac{U_2 + P_2V_2}{H_2}\right) - \left(\frac{U_1 + P_1V_1}{H_1}\right) + \Delta E_p + \Delta E_k
\]

\[
\Rightarrow Q - W_s = \Delta H + \Delta E_p + \Delta E_k
\]

تذکر: نشان دادن متغیر‌های ترمودینامیکی با حرف بزرگ به منزله بیان برای واحد مول و با حرف کوچک به منزله بیان برای واحد جرم است.
بررسی مثال ۴-۳ کتاب-قسمت ب):

معادله‌ی ظرفیت حرارتی گاز دی اکسید کربن عبارت است از:

\[C_p = 6.393 + 10.1 \times 10^{-3} T - 3.405 \times 10^{-6} T^2 \]

بر حسب کلوین می‌باشد. معادله‌ی فوق را بصورتی در آورد که حساب واحد یک دهد:

\[Btu/lbmole^\circ F \text{ with } T \text{ in } ^\circ F \text{ and } \Delta T \text{ in } ^\circ F \]

\[
\begin{align*}
T(K) & \quad \Rightarrow \quad T({}^\circ F) \\
C_p \left(\frac{Cal}{gmole . K} \right) & \quad \Rightarrow \quad C_p \left(\frac{Btu}{lbmole . {}^\circ F} \right)
\end{align*}
\]

حل:

\[{}^\circ F = 1.8^\circ C + 32 = 1.8 \times (K - 273) + 32 \]

\[\Rightarrow K = \frac{{{^\circ }F - 32}}{1.8} + 273 \]

\[C_p = 6.393 + 10.1 \times 10^{-3} \left(\frac{{^\circ }F - 32}{1.8} + 273 \right) - 3.405 \times 10^{-6} \left(\frac{{^\circ }F - 32}{1.8} + 273 \right)^2 \]

\[\times \left(\frac{Cal}{gmole . K} \right) \left(\frac{4.18 J}{1 Cal} \right) \left(\frac{1 Btu}{1055 J} \right) \left(\frac{454 gmole}{1 lbmole} \right) \left(\frac{1 K}{1.8^\circ F} \right) \]
ارتباط در گازهای ایده آل C_p, C_v

بررسی مثال 4-4 کتاب:
نشان دهنده که برای گازهای کامل یک انتی رابطه

حل:
قانون اول ترمودینامیک:

$$Q - W = \Delta U + \Delta E_p + \Delta E_k$$

$$\Delta E_k, \Delta E_p$$

اگر بتوان از

$$Q - W = \Delta U$$
$$dQ - dW = dU$$

$$C_p dT - PdV = C_v dT$$
$$PV = RT \Rightarrow PdV = RdT$$

$$\Rightarrow C_p dT - RdT = C_v dT \Rightarrow C_p - C_v = R$$

$$\Delta h$$

استفاده از ظرفیت حرارتی متوسط در محاسبه

$$\Delta h = \int_{T_1}^{T_2} C_p dT = C_{pm} \int_{T_1}^{T_2} dT = C_{pm} (T_2 - T_1) = C_{pm} \frac{\int_{T_1}^{T_2} C_p dT}{T_2 - T_1}$$

در جداولی لیست شده باشند با توجه به مورد فوق الذکر می توان بدون انتگرال

$$C_{pm}$$

گیری مسئله را حل کرد.

مثال- مطلوب است تغییر آنتالپی یک کیلومول ازن (نتروژن) که در فشار ثابت 10 kPa، سانتی‌گراداتا 11 درجه حرارت داده می‌شود.

$$\Delta h_n_{12} = \Delta h_n_{12} - \Delta h_n_{12}$$

$$\Delta h_n_{12} = C_{pm} (1100 - T_0) - C_{pm} (18 - T_0)$$
$$= 31.593 (1100 - 0) - 29.12 (18 - 0) = 34228.14 \text{ J/mole K}$$
محاسبه آنتالپی برای مخلوط‌ها

بررسی مثال ۴-۷ کتاب

آنالیز گاز:

$CO_2 : 9.2\%$
$CO : 1.5\%$
$N_2 : 82\%$
$O_2 : 7.3\%$

راه حل اول:

$Base : 1\text{lb mole of mix}$

$\Delta H_{mix} = n_{CO_2} \Delta H_{CO_2} + n_{CO} \Delta H_{CO} + n_{O_2} \Delta H_{O_2} + n_{N_2} \Delta H_{N_2}$

$\Delta H_{CO_2} = \int_{550}^{200} C_{PCO_2} \cdot dT = C_{pm} (200 - T_0) - C_{pm} (550 - T_0)$

$= 9.91 (200 - 32) - 9.95 (550 - 32)$

مقادیر C_{pm} از جدول صفحه ۳۰ کتاب خوانده شده و مقدار ۹.۹۵ از طریق برنامه‌نویسی بدست آمده است.

به همین ترتیب آنتالپی سایر اجزا محاسبه شده و با هم جمع می‌شود.

راه حل دوم:

$Base : 1\text{lb mole of mix}$

استفاده می‌کنیم $C_{p_{mix}}$ از

$C_{p_{mix}} = \sum_{i=1}^{n} y_i C_{p_i} = y_{CO_2} C_{PCO_2} + y_{CO} C_{PCO} + y_{O_2} C_{PO_2} + y_{N_2} C_{PN_2}$

www.ShimiPedia.ir
امکان‌های آنتالپی با استفاده از جداول آنتالپی

برخی جداول و جداول ممکن است آنتالپی گازها (یا صورتی مواد) را مستقیماً هر دما داده ان و دیگر نیاز به استفاده از چشم‌اندازی تجدید نیاز دارد و یا در برخی از کتب مرجع ترمودینامیکی نمودارهایی وجود دارد که مقادیر آنتالپی را بر حسب دما، فشار، یا حتی خواص حجمی داده ان (در کاربرد این جداول و منحنی‌ها در سیستم‌های بدون پایداری آنها، شرود) چنین چنین چنین مبدا (جداول (1-4)، الف) (4-4، ب) صفحات 32-42 و 434)

تذکر: مثال 9-10 کتاب در این زمینه مطالعه شود.

با استفاده از معادله ی کلاژیوس - کلاژیوس با داشتن فشار بخاریک ماده در دو دما متفاوت می‌توان گرمایی نهان تبخير آن ماده در دماهای نزدیک آن دما بدست آورد.

با استفاده از معادله ی واشنگدون می‌توان با داشتن گرمایی نهان تبخير در یک دما گرمایی نهان تبخير در دما دیگر را بدست آورد.
پیدا کردن آنتالپی از جدول بخار
مثال A: آنتالپی آب در 80 درجه فارنهایت
ب: بخار اشباع در 80 درجه فارنهایت
ب - مایع اشباع در 20 درجه فارنهایت
ج - مخلوط مایع و بخار اشباع در 80 درجه فارنهایت

الف) با استفاده از جدول صفحه 8

9.1095 ج) مایع اشباع در 80 درجه فارنهایت

\[h = x h_g + (1 - x) h_f \]

\[h_g = 1145.8 \quad \frac{Btu}{lbm} \]

\[h_f = 167.99 \quad \frac{Btu}{lbm} \]

\[x = ? \]

از سایر داده های مشابه برای پیدا کردن \(x \) استفاده می‌کنیم.

\[V = \frac{V}{m} = \frac{200 \text{ ft}^3}{10 \text{ lbm}} = 20 \quad \frac{\text{ft}^3}{\text{lbm}} \]

\[V_g = 33.67 \quad \frac{\text{ft}^3}{\text{lbm}} \]

\[V_f = 0.01663 \quad \frac{\text{ft}^3}{\text{lbm}} \]
با توجه به اینکه 67.33(0.01663) است پس حالت اشباع داریم:

\[V = xV_g + (1 - x)V_f \]
\[20 = x(33.67) + (1 - x)(0.01663) \Rightarrow x = 0.59 \]
\[h = 0.59 \times 1145.8 + (1 - 0.59)(167.99) = 744.9 \text{ Btu/} \text{lbm} \]
\[H_{total} = mh = 10 \times 744.9 = 7449 \text{ Btu} \]

(энергиابالانس)

قانون اول ترمودینامیک در حقيقة برقراری موازین انرژی حول سیستم است و می‌توان حول هر سیستم
با زیرسیستم آنرا برقرار کرد.

برای عمومیت دادن به آن قانون و با توجه به شکل زیر می‌توان نوشت:

(فعلاً سیستم‌های بدون واکنش شیمیایی را در نظر می‌گیریم)

سیرعت هر جریان \(u \)
ارتفاع هر جریان \(z \)
برای مثال، سرعت جریان یکم در خروجی است.

\[Q - W_s = \left(\frac{H_2 - H_1}{\Delta H} \right) + \left(\frac{E_{K2} - E_{K1}}{\Delta E_K} \right) + \left(\frac{E_{P2} - E_{P1}}{\Delta E_P} \right) \]

\[H_2 = H_{e1} + H_{e2} + H_{e3} + \cdots = m_{e1}.h_{e1} + m_{e2}.h_{e2} + \cdots \]

\[H_1 = H_{i1} + H_{i2} + H_{i3} + \cdots = m_{i1}.h_{i1} + m_{i2}.h_{i2} + \cdots \]

\[E_{K2} = E_{Ke1} + E_{Ke2} + E_{Ke3} + \cdots = \frac{1}{2} m_{e1}.u_{e1}^2 + \frac{1}{2} m_{e2}.u_{e2}^2 + \cdots \]

\[E_{K1} = E_{Ki1} + E_{Ki2} + E_{Ki3} + \cdots = \frac{1}{2} m_{i1}.u_{i1}^2 + \frac{1}{2} m_{i2}.u_{i2}^2 + \cdots \]

\[E_{P2} = E_{Pe1} + E_{Pe2} + E_{Pe3} + \cdots = m_{e1}.g.z_{e1} + m_{e2}.g.z_{e2} + \cdots \]

\[E_{P1} = E_{Pi1} + E_{Pi2} + E_{Pi3} + \cdots = m_{i1}.g.z_{i1} + m_{i2}.g.z_{i2} + \cdots \]

شد رابطی ی اخیر را در قانون اول جایگذاری می‌کنیم:

\[Q - W_s = \left(\sum_{j=1}^{n} m_{ej}.h_{ej} - \sum_{j=1}^{m} m_{ij}.h_{ij} \right) + \left(\frac{1}{2} \sum_{j=1}^{n} m_{ej}.u_{ej}^2 - \frac{1}{2} \sum_{j=1}^{m} m_{ij}.u_{ij}^2 \right) \]

\[+ \left(g \sum_{j=1}^{n} m_{ej}.z_{ej} - g \sum_{j=1}^{m} m_{ij}.z_{ij} \right) \]

تذکر ۱: در رابطه ی فوق Q و Ws پرآیند کل گرمای و کارهای شافاتی هستند (با حفظ قرارداد مربوطه).

تذکر ۲: رابطه ی فوق یک رابطه ی کلی است و در موارد خاصی می‌توان آن‌ها را ساده نمود.

تذکر ۳: در مواردی که پیش‌بینی نشده یا مجموعه می‌باشد، m_{ej} = m_{ij}

نکته: در بسیاری از این سیستم‌ها می‌باشد خارج هم به‌شد.

بنابراین رابطه ی فوق ساده می‌شود (پس \(n=m \) خواهد شد.)

www.ShimiPedia.ir
 iw w w w . S h i m i P e d i a . i r

موازنې انرژی همراه با واکنش های شیمیایی

نکته ۱ - وظیفه واکنش شیمیایی انجام می شود به گونه ای که وعده گرمایی بودن واکنش مقداری انرژی از سیستم جذب با دفع می شود (داده یا گرفته می شود) که باید آنها در محاسبات لحاظ کنیم.

نکته ۲ - گرمای واکنش در حقیقت یک تغییر آنتالپی است (بین مواد اولیه و محصولات) نه انتقال حرارت

نکته ۳ - نحوه لحاظ کردن تغییرات انرژی حاصل از واکنش در موازنې انرژی:

برای این منظور به آنتالپی هر سازنده یک کمیت مشخص که گرمای استاندارد تشکیل است (آنتالپی مولی استاندارد تشکیل) (Δ\(\hat{H}^\circ_f\)) می افرادیم. به عبارت دیگر:

\[\Delta \hat{H}_A = \Delta \hat{H}^\circ_f + \int_{T_0}^{T} C_{PA} dT \]

و برای مخلوط جدید حجم:

\[\Delta H_{mix} = \sum_{i=1}^{n} n_i \Delta \hat{H}^\circ_{fi} + \sum_{i=1}^{n} \int_{T_{eff}}^{T} n_i C_{Pi} dT \]

تحليل نکته ۳ (مهم)
چرا در بخش قبل که فرآیند ها بدون واکنش شیمیایی بودند حرفی از \(\Delta \hat{H}^\circ_f \) ندیدم؟
دو فرآیند که یکی با واکنش و دیگری بدون واکنش است را در نظر بگیرید:

www.ShimiPedia.ir
به همراه با واکنش شیمیایی

به دو واکنش شیمیایی

<table>
<thead>
<tr>
<th>T_{in}</th>
<th>A</th>
<th>B</th>
<th>T_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Delta H = \Delta H_{out} - \Delta H_{in}$

$\Delta H_{in} = (\Delta H_A + \Delta H_B)_{in} =$

$(n_A \Delta \hat{H}_{fA}^{PA} + \int_{T_0}^{T_{in}} n_A C_{PA}dT) +$

$(n_B \Delta \hat{H}_{fB}^{PB} + \int_{T_0}^{T_{in}} n_B C_{PB}dT) =$

$(\Delta H_{fA}^o + \Delta H_{fB}^o) + \int_{T_0}^{T_{in}} (n_A C_{PA} + n_B C_{PB})dT$

$\Delta H_{out} = (\Delta H_A + \Delta H_B)_{out} =$

$(\Delta H_{fA}^o + \Delta H_{fB}^o) + \int_{T_0}^{T_{out}} (n_A C_{PA} + n_B C_{PB})dT$

$\Delta H = \int_{T_0}^{T_{out}} (n_A C_{PA} + n_B C_{PB})dT +$

$\int_{T_0}^{T_{in}} (n_A C_{PA} + n_B C_{PB})dT$

$\Rightarrow \Delta H = \int_{T_0}^{T_{out}} (n_A C_{PA} + n_B C_{PB})dT$

مشاهده می‌شود که در اینجا آنتالپی‌های تشکیل حذف بخشی شوند و یک آنتالپی واکنش نامیده می‌شود.

اگر دمای ورودی و خروجی یکی باشند داریم:

$\Delta H = (n_D \Delta \hat{H}_{fD}^{o} - n_A \Delta \hat{H}_{fA}^{o} - n_B \Delta \hat{H}_{fB}^{o}) +$

$\int_{T_0}^{T_{out}} (n_D C_{PD} - n_A C_{PA} - n_B C_{PB})dT$

www.ShimiPedia.ir
تذکر: اگر دمای ورودی و خروجی مساوی بودند دو انگرال را می‌توانیم ادغام کنیم.

همان‌گونه که دیده می‌شود اگر واکنش شیمیایی اتفاق نیفتند آن‌البیوی استاندارد تشکیل از طرفین ساده می‌شود و لذا نیاز به استفاده از آنها نبود ولی در صورتی که واکنش اتفاق نیفتند می‌باشد آنها را در نظر بگیریم.

تذکر: به واحدهای زیر توجه کنید:

\[\Delta H \left\{ \begin{array}{c} \text{kJ} \\ \text{Btu} \end{array} \right. \quad \Delta \hat{H} \left\{ \begin{array}{c} \text{kJ} \\ \text{g mole} \\ \text{Btu} \\ \text{lb mole} \end{array} \right. \quad \Delta h \left\{ \begin{array}{c} \text{kJ} \\ \text{kg} \\ \text{Btu} \\ \text{lbm} \end{array} \right. \]

نکته ۴ - با توجه به نکته قبل ما نیاز به دانستن گرمایی استاندارد تشکیل داریم و در صورت لحاظ نمودن آنها در محاسبات گرمایی واکنش خودی خود در محاسبات لحاظ می‌شود.

نکته ۵ - روشن‌تره، نکات و استاندارد های مربوط به آنتالپی استاندارد تشکیل از صفحه ۴۸۷ کتاب مطالب شود.

نکته ۶ - از آنجایی که محاسبه گرمایی استاندارد مواد ممکن است مشکل و پیچیده باشد غاها از گرمایی استاندارد اختراق استفاده می‌شود.

در این زمینه توضیحات صفحه ۴۹۲ کتاب مطالب شود.

گرمایی استاندارد تشکیل مواد در صفحه F کتاب موجودند.

نکته ۷-

ازرسش حرارتی سوخت

مقدار گرمایی آزاد شده به ازای اختراق واحد جرم یا مول، یا حجم سوخت را گویند.

www.ShimiPedia.ir
انواع ارزش حرارتی:
الف - ارزش حرارتی بالا (ناخلص)... (کاربرد در بمب کالریمت)
ب - ارزش حرارتی پایین (ناخلص)... (کاربرد در صنعت)

نکته 8

ارتباط بین گرمایی و اکنش در فشار ثابت و گرمایی واکنش در حجم ثابت:

\[Q_v = \Delta U \]
در حجم ثابت:

\[Q_p = \Delta H = \Delta (U + PV) \]

\[\Rightarrow Q_p - Q_v = \Delta (P.V) \]

برای گازهای ایده آل داریم:

\[\Delta (P.V) = \Delta nRT \]

تذکر: تا زمانی که گفته نشود واکنش ها را در فشار ثابت در نظر می‌گیریم.
Mass & Energy Balance

Islamic Azad University Of Dezful

\[n_A \xrightarrow{T_{in}} A \]

\[n_B \xrightarrow{B} n'_B \]

\[A \xrightarrow{B} n'_A \]

\[D \xrightarrow{T_{out}} n_D \]

\[Q = \Delta H_{reaction} \]

\[\Delta H_{reaction} = \Delta H_2 - \Delta H_1 \]

\[\Delta H_2 = (n'_A \Delta H_{fA} + n'_B \Delta H_{fB} + n_D \Delta H_{fD}) + \int_{T_0}^{T_{out}} (n'_A C_{PA} + n'_B C_{PB} + n_D C_{PD})dT \]

\[\Delta H_1 = (n_A \Delta H_{fA} + n_B \Delta H_{fB}) + \int_{T_0}^{T_{in}} (n_A C_{PA} + n_B C_{PB})dT \]

\[\text{وقتي كه } \Delta H_2 - \Delta H_1 \]

\[\text{لحاش شود عبارات داخل پرانتز بطور خود به خود درصدی از مواد را که وارد واکنش شده اند در محاسبات دخل می‌کنند.} \]
موازن انزی در حالیکه محصولات ترکیب شونده ها در درجه سانتیگراد (دمای مینا) نباشد:

این عناوین در کتاب داده شده ولی برای ما مطلب جدیدی نیست. چرا به حالی که تر آنها مورد بررسی قرار دادیم ولی به آن اشاره می کنیم:

مشکل که در کتاب مطرح کرده این است که گرمای استاندارد تشکیل را در دمای مینا دادیم پس از رابطه ی زیر استفاده شده است:

\[\Delta H_{\text{reaction}} = (c \Delta H_f^o + d \Delta H_f^o) - (a \Delta H_f^o + b \Delta H_f^o) \]

چیزی که بدست می آید گرمای واکنش در دمای مینا خواهد بود ولی واکنش در دمای \(T \) انجام گرفته است پس چگونه؟

به یاد داشته باشید که آنالیز یک تابع حالیت است و نیاز به یک سری از فرضیهای دستی و ذهنی مستقل در حل کرد به شکل زیر توجه کنید:

\[\Delta H = \Delta H_{\text{I}} + \Delta H_{\text{II}} + \Delta H_{\text{III}} \]

www.ShimiPedia.ir
\[
\Delta H_I = \int_{T}^{T_{\text{ref}}} (aC_{PA} + bC_{PB}) dT
\]
\[
\Delta H_R = \int_{T_{\text{ref}}}^{T} (aC_{PA} + bC_{PB}) dT
\]

\[\Rightarrow \Delta H_I = -\Delta H_R\]

\[
\Delta H_{III} = \Delta H_P
\]

\[
\Delta H_P
\]

پس می‌توان نوشت:

\[
\Delta H = \Delta H_P - \Delta H_R + \Delta H^O_R
\]

یک‌ت‌که ١١-
مجتمعه دمای آدیاباتیک شعله

توجه - حداکثر دمایی که می‌توان در اثر انجماد یک فرآیند (واکنش‌های گرمازا) به آن دست یافته.

دانستن دمای فوق برای امور خاص به‌خصوص احتراق و ... لازم است.
برقراری قانون اول

در قسمت قبل هم داشتیم:

\[\Delta H = \Delta H_p - \Delta H_R + \Delta H^o_r \]

\[\Rightarrow Q = \Delta H_p - \Delta H_R + \Delta H^o_r \]

پس برای واقعیت های گرمایا برای رسیدن به حداقل دما با ایده سیستم را ایزوتوک کنیم تا گرمای خارج

نشود.

یعنی 0= است ضمناً از احتراق ناقص هم با یاد صرف نظر شود.

\[\Rightarrow \Delta H_p - \Delta H_R + \Delta H^o_r = 0 \]

\[\Rightarrow \Delta H_p = \Delta H_R - \Delta H^o_r \]

یعنی اینکه اگر رابطه ی اخیر برقرار باشد به دمای آدیاباتیک شعله خواهیم رسید.

نکته 12 - یکی از کاربردهای مهم گرمایی اندیار احتراق محاسبه ی گرمایی استاندارد واقعیت ها

با استفاده از آن است.

\[A + B \longrightarrow D \quad \Delta H^o_r = \]?

\[A + O_2 \longrightarrow CO_2 + H_2O \quad \Delta H^o_{c_A} \]

\[B + O_2 \longrightarrow CO_2 + H_2O \quad \Delta H^o_{c_B} \]

\[-(D + O_2 \longrightarrow CO_2 + H_2O) \quad \Delta H^o_{c_D} \]

\[A + B \longrightarrow D \quad \Delta H^o_r = \Delta H^o_{c_A} + \Delta H^o_{c_B} - \Delta H^o_{c_D} \]
بررسی مثال ۴-۲۶ کتاب
گاز گریز از ذغالسنگ عبارت است از تبدیل ذغال جامد به گاز. ارزش حرارتی ذغالسنگ ها متفاوت است ولی هر چه ارزش حرارتی ذغالسنگ بالاتر باشد، ارزش گازهای تولید شده (م탄، منوکسید کربن، نیتروژن و ...) از آن نیز بیشتر است. ذغالسنگ زیر بصرفه كه دریافت شده، دارای ارزش حرارتی ۲۹۷۷۰ کیلوگرم بر کیلوگرم بوده است. با فرض آنکه مقدار مذکور، ارزش حرارتی ناخالص ذغال باشد، مطلوب است ارزش حرارتی خالص آن.

\[
\begin{align*}
\text{Anaerobic Coal} & : 1\text{kg of coal} \\
\begin{align*}
C & : 71\% \\
H_2 & : 5.6\% \\
N_2 & : 1.6\% \\
Nets & : 2.7\% \\
Ash & : 6.1\% \\
O_2 & : 13\%
\end{align*}
\]

دربین کیلوگرم ذغال مقدار ۵۵۰ کیلوگرم هیدروژن وجود دارد.

گرمای تبخير + ارزش حرارتی پایین = ارزش حرارتی بالا

پس می‌توان نوشته: گرمای تبخير - ارزش حرارتی بالا = ارزش حرارتی پایین

ارزش حرارتی بالا = ۲۹۷۷۰ کیلوگرم بر کیلوگرم

\[\frac{2}{0.056} + \frac{1}{2} \frac{18}{0.5} \rightarrow H_2O \]
بررسی مثال ۲۱-۴: (واکنش های تکمیل نشده)
یک نوع کانال پیروی آهن متشکل از ۸۵٪ FeS_2 و ۱۵٪ ناخالصی (مواد پی اثر سنگ و غیره) را با ۲۰۰٪ هوا اضافی به میانی واکنش زیر برخشته می‌کند تا حاصل شود:

\[4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2 \]

FeS_2 تمام ناخالصی‌ها باند‌بندی FeS_2 FeS در پس مانندار جامد (خاکستر) باقی می‌ماند که محتوای ۲/۵٪ است. گرامی ابزار اندام واکنش را به ازای هر کیلوگرم از کانالی بدست آورده.

حل: واکنش به طور کامل انجام نشده پس نمی‌توان \(\Delta H \) با استفاده از ضرایب استوکیومتری بدست آورد و بدین‌مولها حساب شوند.

\[
\text{BASE} : 1 \text{Kg}
\]

![Diagram](https://www.ShimiPedia.ir)
Mass & Energy Balance

Islamic Azad University Of Dezful

جرم اکسیژن ورودی

\[
\frac{0.85 \times 11 \times 32}{4 \times 120} \times 3
\]

مقدار FeS\textsubscript{2} در اکسیداسیون برابر است

\[
P = 0.04 \times FeS\textsubscript{2}
\]

واکنش داده Fe2+ و اکسیداسیون FeS\textsubscript{2} مقدار

\[
0.85 \times (0.58 \times 0.04) = 0.83 \text{ Kg} \ FeS\textsubscript{2}
\]

محاسبه آنتالپی استاندارد واکنش:

\[
\Delta H^\circ_r = \Delta H^\circ_{II} - \Delta H^\circ_I
\]

\[
\Delta H^\circ_{II} = \Delta H_{O_2} + \Delta H_{N_2} + \Delta H_{SO_2} + \Delta H_{Fe_2O_3} + \Delta H_{FeS_2} + \Delta H_{Other}
\]

از طرفی:

\[
\Delta H_{O_2} = n_{O_2} \cdot \Delta \hat{H}^\circ_{O_2} + \int_{T_0=25}^{25} n_{O_2} \cdot C_{p_{O_2}} dT = 0
\]

به همین ترتیب آنتالپی نتروژن نیز صفر خواهد بود.
با استخراج آتیاهی های استاندارد تشکیل مواد از ضمیمه ی آ فیکتی های آتیاهی استاندارد و اکتش

بررسی مثال 6-10 (محاسبه ی گرمای و اکتش در دماهای متغیر با شرایط استاندارد)

محترمین تصور میکرد که نمیدانستند جدیدی ابداع کرده که ببینم آن و اکتش زیر با میزان تبدیل 100%

انجام می گیرد:

\[CO_2 + 4H_2 \rightarrow 2H_2O + CH_4 \]

مطابق مقدار حرارتی که یا به سیستم داده با آن خارج گردد در صورتی که گازها در دمای 500

درجه سانتی‌گراد وارد شده، و در همین دما خارج شوند.

\[\Delta H_{r} = \Delta H_{p} + \Delta H_{r}^{o} - \Delta H_{r} \]

\[C_{P,CO_2} = 36.11 + 4.233 \times 10^{-2}T - 2.887 \times 10^{-3}T^2 + 7.464 \times 10^{-9}T^3 \]

\[C_{P,H_2} = 28.84 + 0.00765 \times 10^{-3}T - 0.3288 \times 10^{-2}T^2 - 0.869 \times 10^{-9}T^3 \]

\[C_{P,H_2O} = 33.46 + 0.688 \times 10^{-2}T - 0.7604 \times 10^{-3}T^2 + 3.593 \times 10^{-9}T^3 \]

\[C_{P,CH_4} = 34.31 + 5.469 \times 10^{-2}T - 0.3661 \times 10^{-5}T^2 - 11 \times 10^{-9}T^3 \]
\[
\Delta H_r = 2\Delta \hat{H} \left(\frac{j}{\text{gmole}} \right)_{H_2O} + 1 \times \Delta \hat{H} \left(\frac{j}{\text{gmole}} \right)_{CH_4} - 1 \times \Delta \hat{H} \left(\frac{j}{\text{gmole}} \right)_{CO_2}
= 2(-241827) - 74848 - (-393513) = -164989 \ \frac{j}{\text{gmole}}
\]

\[
\Delta H_p = \int_{T_o}^{T} (2C_{P_{H_2O}} + C_{P_{CH_4}})dT = \int_{25}^{500} (101.23 + 6.845 \times 10^{-2}T + 1.89 \times 10^{-5}T^2 - 18.19 \times 10^{-9}T^3)dT
= 57122 \times 29 \ \frac{j}{\text{gmole \ CO}_2} = 57.12 \ \frac{kJ}{\text{gmole \ CO}_2}
\]

\[
\Delta H_R = \int_{25}^{500} (C_{P_{CO_2}} + 4C_{P_{H_2}})dT = \int_{25}^{500} (151.47 + 4.26 \times 10^{-2}T - 1.57 \times 10^{-5}T^2 + 3.98 \times 10^{-9}T^3)dT
= 71948 \times 25 \ \frac{j}{\text{gmole \ CO}_2} = 71.95 \ \frac{kJ}{\text{gmole \ CO}_2}
\]

\[
\Delta H_{rt} = 57.12 - 164.989 - 71.95 = -179.812 \ \frac{kJ}{\text{gmole}}
\]
\[\Delta H \] at 500 °C = ?
\[\Delta H = \Delta H_2 - \Delta H_1 \]

\[\Delta H_2 = \Delta H_{H_2O} + \Delta H_{CH_4} = \]
\[2\Delta \hat{H}^\circ_{H_2O} + \int_{25}^{500} C_{P_{H_2O}} dT + \Delta \hat{H}^\circ_{CH_4} + \int_{25}^{500} C_{P_{CH_4}} dT \]

\[\Delta H_1 = \Delta H_{CO_2} + \Delta H_{H_2} = \]
\[2\Delta \hat{H}^\circ_{CO_2} + \int_{25}^{500} C_{P_{CO_2}} dT + 4\Delta \hat{H}^\circ_{H_2} + \int_{25}^{500} C_{P_{H_2}} dT \]

\[\Rightarrow \Delta H = (2\Delta \hat{H}^\circ_{H_2O} + \Delta \hat{H}^\circ_{CH_4} - \Delta \hat{H}^\circ_{CO_2} - 4\Delta \hat{H}^\circ_{H_2}) + \]
\[\int_{25}^{500} (2C_{P_{H_2O}} + C_{P_{CH_4}} - C_{P_{CO_2}} - 4C_{P_{H_2}}) dT \]

بررسی مثال 2-3 (محاسبه ی گرمای واکنش در دمایی مختلف با شرایط استاندارد)

محاسبات مربوط به مثال قبل را با استفاده از جدول 4.4b و ضمیمه ی D تکرار کنید.

\[\Delta H_{r_{500}} = \Delta H_P + \Delta H_r^\circ + \Delta H_R \]
\[\Delta H_P = 2\Delta H_{H_2O} + \Delta H_{CH_4} \]
\[\Delta H_R = \Delta H_{CO_2} + 4\Delta H_{H_2} \]

از جدول 4.4b:

\[H_{H_2O}^{500 °C} = H_{H_2O}^{298 K} = 17795.11 \]
\[H_{H_2O}^{25 °C} = H_{H_2O}^{298 K} = 837 \]
\[H_{CH_4}^{25 °C} = H_{CH_4}^{298 K} = 24013.91 \]
\[H_{CH_4}^{425 °C} = H_{CH_4}^{425 K} = 879 \]
\[H_{CO_2}^{500 °C} = H_{CO_2}^{277 K} = 14640 \]
\[H_{CO_2}^{25 °C} = H_{CO_2}^{298 K} = 718 \]
\[H_{CO_2}^{25 °C} = H_{CO_2}^{277 K} = 22342 \]
\[H_{CO_2}^{25 °C} = H_{CO_2}^{298 K} = 912 \]
بررسی مثال 2-34 (کاربرد موازنه انرژی در تحویل همراه با وکنش شیمیایی)
منوسکیدرگان در 45 درجه سانتیگراد را با 50% هوای اضافی در دمای 1000 درجه هزار درجه فارنهایت بطور کامل در فشار 2 آتوماس پایه می‌سوزاند. محصولات احترق در دمای 1000 درجه فارنهایت از کوره خارج می‌شوند. مطلوب است حرارت خروجی از محفظه احترق بر حسب Btu به‌آواز هر پوند ورودی،

\[\Delta H_p = 2\Delta H_{H_2O} + \Delta H_{CH_4} = 2(H_{H_2O_{500}} - H_{H_2O_{25}}) + (H_{CH_{4s00}} - H_{CH_{425}})
= (2(17795 \times 11 - 837) + (24013 \times 91 - 879) = 57051 \times 13 \text{ gmole} \]

\[\Delta H_R = (H_{CO_{500}} - H_{CO_{25}}) - 4(H_{H_2O_{500}} - H_{H_2O_{25}}) = 77023 \times 1 \text{ gmole} \]

\[\Delta H_{\text{w}_{500}} = \Delta H_p + \Delta H_o - \Delta H_R = 57051 \times 13 - 164989 - 77023 \times 1 = -184 \times 95 \text{ gmole CO}_2 \]

\[\frac{n_{CO}}{50^\circ F} = \frac{1}{50^\circ F} \quad \rightarrow \quad \text{CO} + \frac{1}{2} O_2 \rightarrow CO_2 \]

\[\text{BASE} : 1 \text{ lbmole CO} \]

مورد نیاز \(O_2 = 0.5 \text{ lbmole} \)

ورودی \(O_2 = 0.5 \times 1.5 \text{ lbmole} \)

ورودی \(N_2 = 0.5 \times 1.5 \times \frac{79}{21} = 2.82 \text{ lbmole} \)

خروجی \(O_2 = O_{2_{\text{input}}} - O_{2_{\text{cons}}} = 0.5 \times 1.5 - 0.5 = 0.5(1.5 - 1)\text{ lbmole} \)

خروجی \(N_2 = N_{2_{\text{input}}} = 2.82 \text{ lbmole} \)
\[\Delta H = \Delta H_2 - \Delta H_1 \]

\[\Delta H_2 = \Delta H_{CO_2} + \Delta H_{O_2} + \Delta H_{N_2} = \]

\[\Delta \hat{H}^\theta_{fCO_2} + \int_{77}^{800} C_{PCO_2} \ dT + 0.25 \Delta \hat{H}^\theta_{fO_2} + \int_{77}^{800} 0.25 C_{PO_2} \ dT \]

\[+ 2.82 \Delta \hat{H}^\theta_{fN_2} + \int_{77}^{800} 2.82 C_{PN_2} \]

\[\Rightarrow \Delta H_2 = \Delta \hat{H}^\theta_{fCO_2} + \int_{77}^{800} (C_{PCO_2} + 0.25 C_{PO_2} + 2.82 C_{PN_2}) \ dT \]

\[\Delta H_1 = \Delta H_{CO} + \Delta H_{O_2} + \Delta H_{N_2} = \]

\[\Delta \hat{H}^\theta_{fCO} + \int_{77}^{50} C_{PCO_2} \ dT + 0.75 \Delta \hat{H}^\theta_{fO_2} + \int_{77}^{1000} 0.75 C_{PO_2} \ dT \]

\[+ 2.82 \Delta \hat{H}^\theta_{fN_2} + \int_{77}^{1000} 2.82 C_{PN_2} \]

\[\Rightarrow \Delta H_2 = \Delta \hat{H}^\theta_{fCO_2} + \int_{77}^{1000} (C_{PCO_2} + 0.75 C_{PO_2} + 2.82 C_{PN_2}) \ dT \]

با محاسبهٔ تفاصل دو مقدار فوق آنتالپی واکنش محاسبه خواهد شد.
ضمیمه - الف
کار با ماشین حساب مهندسی
fx-5500LA مدل
در این بخش سعی شده تا نحوه انجام برخی از عملیات ریاضی که در دروس مختلف مهندسی شیمی کاربرد پیشتری دارد مورد بررسی قرار گیرد برای دستیابی به اطلاعات جامع تر به دقت‌بخش راهنمای ماسیح حساب رجوع کنید.

1- درونتایی

(A)

SHIFT > F6 > F6

(B)

وارد کردن داده‌ها به عنوان مثال:

\[7,2 > F1 \]

\[11,5 > F1 \]

(C)

وارد کردن عدد مورد نظر (برای مثال عدد 9) که می‌خواهیم مقدار مربوط به آن را بدست آوریم:

\[F6 > F6 > 9 > F5 > EXE \]

که در اینجا عدد 3.5 حاصل شد.

تذکر مهم: حتماً بعد از هر بار انجام درونتایی باید برای دفعات بعد حافظه ی ماسیح حساب باک شود.

\[\text{SHIFT} > 4(\text{CLEAR}) > F1 \]

\[\text{SHIFT} > 4(\text{CLEAR}) > F6 \]

تذکر: دستور زیر حافظه ی فرمولی ماسیح حساب را باک می‌کند.

\[\text{SHIFT} > 4(\text{CLEAR}) > F4 \]

2- حل دستگاه معادلات جبری خطی

به مثال زیر توجه کنید:

مقادیر مجهول را از معادلات جبری زیر بدآورید.

\[2x_1 + 2x_2 + 5x_3 + 3x_4 = 15 \]
\[x_1 + 5x_2 + 2x_3 = 7 \]
\[3x_1 + x_2 + 4x_4 = 11 \]
\[x_2 + 4x_3 + 6x_4 = 3 \]
با تشکیل ماتریس‌های ضرایب و ثوابت داریم:

\[
\begin{bmatrix}
2 & 2 & 5 & 3 \\
1 & 5 & 2 & 0 \\
3 & 1 & 0 & 4 \\
0 & 1 & 4 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
15 \\
7 \\
11 \\
3
\end{bmatrix}
\]

اکنون با داشتن ماتریس‌های ضرایب و ثوابت با استفاده از ماتریس حساب و به طریق زیر معادلات را حل می‌کنیم:

SHIFT > F2 > F2

در این مرحله باید تعداد معادلات را وارد کنیم برای مثال در اینجا با داشتن 4 معادله مقدار 4 را وارد کرده و F1 را می‌زنیم.

اکنون با کلید F2 به مرحله وارد کردن ضرایب و ثوابت می‌ریزیم:

با وارد کردن درایه‌های مربوط به ماتریس‌های فوق مقدار مجهول به سادگی بدست خواهد آمد.

نکات:

1. بعد از وارد کردن هر درایه کلید مشخص شده در زیر آن را جهت وارد کردن مقدار می‌زنیم.

2. بعد از وارد کردن مقدار سطر اول با فشار کلید فلش پایین مقدار سطر دوم را وارد و به همین ترتیب برای سطر‌های بعده عامل می‌کنیم.

3. برای مشاهده جواب از کلید (COMP) استفاده می‌کنیم.

4. در صورتی که بیش یک پارامتر در معادلات فوق را انجام می‌دهید بعد از هر بار استفاده باید حافظه ی ماتریس حساب را به کلید ۴۰۲۵ یا کلید پاک کنید.

با حل دستگاه معادلات فوق مقدار زیر حاصل خواهد شد:

\[
\begin{align*}
x_1 &= 4.4407 \\
x_2 &= -0.1299 \\
x_3 &= 1.6045 \\
x_4 &= -0.5480
\end{align*}
\]
3- فرمول دهم به ماشین حساب

گها به رواپیمایی برخورد می کنیم که محاسبه ی آنها به صورت معمول وقت زیادی را می طلبد به خصوص در مواردی که مسائل به طرف سعی، و طرف قابل حل کردن ندارند. بنابراین مفاد توسط یک رابطه محاسبه گردد. به منظور تسریع و افزایش دقت در محاسبات معمولاً از فرمول دهم به ماشین حساب استفاده می شود که آن را مورد بررسی قرار می گیریم:

(A)

SHIFT > 5(CALC)

با انجام فرمان فوق وارد سیستم فرمول بذری مانند به محاسبه حساب خواهیم شد.

برای وارد کردن فرمول به این صورت عمل می کنیم:

مثال:

مقدار Y را به ازای $Z=23$ و $X=5$ محاسبه کنید.

$Y = 2X^2 - 3\sqrt{Z} + 4$

برای تایب حروف الفبا از کلید فلزیک (ALPHA) استفاده می شود.

بعد از تایب با کلید $F2$ فرمول وارد حافظه موقت مانند حساب می شود.

برای انجام محاسبه، بعد از فشردن کلید $F4(CAL)$ نکته 1 تک مقدار را با استفاده از کلید مشخص $F6$ به روش یازی و سپس کلید $F6$ را می زنیم.

تکنیک 1: در صورتی که بعد از تایب فرمول از کلید $F6$ (SET) استفاده کنیم فرمول وارد حافظه دایمی مانند حساب می شود و پس از خاموش کردن در حافظه باقی خواهد ماند.

تکنیک 2: به منظور باز خوانی فرمول از حافظه سپس کلید $F2$ (IN) به روش زیر عمل می کنیم:

SHIFT > 5(CALC) > F1(f)

سپس انتخاب فرمول و استفاده کلید (SET) برای وارد کردن فرمول. (به‌طور مراحل قیل‌اذا که شده)

تکنیک 3: برای پاک کردن یک و یا چند مورد انتخابی به روش زیر عمل می کنیم:

بعد از انتخاب فرمول با فشردن کلید $F6$ (SET) شانگر در رابطه هم می توان فرمول را پاک کرده و هم آن و پرایش نمود در صورتی که مایلیم فرمول پاک شود بعد قرار گرفتن نشانگر بر روی رابطه کلید و دسترسی کلید AC و سپس کلید $F6$ (SET) را می گیریم.
نکته 4 - به منظور یاک نمودن تمامی فرمول ها ابتدا کلید سپس (CLEAR) 4 و در آخر کلید F4(CALC) را فشار دهید.

با محاسبه رابطه ی فوق مدار Y=53.9999 یافتند خواهد آمد.

4- محاسبه ی انگکال به کمک ماشین حساب

برای محاسبه انگکال های معین با استفاده از ماشین حساب به طریق زیر عمل می کنیم:

SHIFT > F3

برای وارد کردن رابطه کلید F1 ماهیت و فرمول را وارد می کنیم. توجه کنید که برای وارد کردن F2(IN) استفاده می شود. سپس با فشار کلید F1(X) محاسبه انجام می شود. یکسان کنید که مقدار انگکال باستفاده از کلید های F5 و F4 و سپس فشار کلید F3 و F2 به راحتی پیدا می شود.

5- حل معادله درجه 2

SHIFT > F2 > F1

سپس وارد کردن ضرایب با استفاده از کلید های F3 و F2 و F1 با استفاده از کلید های F3 و F2 و F1 راهبردی های معادله محاسبه خواهد شد.
ضیمه - ب
ضرایب تبدیل واحد در سیستم‌های مختلف
واحدهای درجه حرارت

واحد درجه حرارت در دستگاه واحد متريك بین المللی (SI) عبارت است از درجه گلیس (°K) که این درجه حرارت به این ترتیب معین شده که نقطه سگانه آب خالی دقیقاً 273.15 درجه گلیس می‌باشد.

$$T[K] = 273.15 + 273.15$$

واحد دیگر درجه حرارت درجه سلوس با علامت اختصاصی °C می‌باشد، که این درجه حرارت سانتی‌گراد سی به این ترتیب درجه بندي شده که سطح درجه سانتی‌گراد ماداد مقدار نقطه انجماد آب و صد درجه سانتی‌گراد ماداد نقطه جوش آب می‌باشد.

$$T[°C] = \frac{K}{0.5} - \frac{273.15}{0.5}$$

یک واحد درجه سانتی‌گراد = یک واحد درجه بندي کلوین

** نحوه محاسبه درجه رنومار (Re) از دیدگاه گازی:**

درجه حرارت رنج دار تا نقطه به پایان یافتن درجه حرارت به آب با زیرین شده.

$$Re[°F] = \frac{10}{57.6}$$

** جدول 1 - 132 ضرایب نسبی واحدهای درجه حرارت

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>°K</th>
<th>°C</th>
<th>°Re</th>
<th>°F</th>
<th>°R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kelvin</td>
<td>K</td>
<td>1</td>
<td>1</td>
<td>4/5</td>
<td>9/5</td>
<td>5/2</td>
</tr>
<tr>
<td>1 degree Celsius</td>
<td>°C</td>
<td>1</td>
<td>1</td>
<td>4/5</td>
<td>9/5</td>
<td>5/2</td>
</tr>
<tr>
<td>1 degree Reamur</td>
<td>°R</td>
<td>5/4</td>
<td>5/4</td>
<td>1</td>
<td>9/4</td>
<td>4/4</td>
</tr>
<tr>
<td>1 degree Fahrenheit</td>
<td>°F</td>
<td>5/9</td>
<td>5/9</td>
<td>4/9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 degree Rankine</td>
<td>°R</td>
<td>5/9</td>
<td>5/9</td>
<td>4/9</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

** جدول 1 - 133 بخش درجه حرارت های معمولی

<table>
<thead>
<tr>
<th></th>
<th>°K</th>
<th>°C</th>
<th>°Re</th>
<th>°F</th>
<th>°R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute zero</td>
<td>0</td>
<td>-273.15</td>
<td>-218.82</td>
<td>-469.67</td>
<td>0</td>
</tr>
<tr>
<td>Freezing point of pure water</td>
<td>273.15</td>
<td>0</td>
<td>0</td>
<td>+32</td>
<td>491.67</td>
</tr>
<tr>
<td>Triple point of pure water</td>
<td>273.15</td>
<td>+0.01</td>
<td>+0.008</td>
<td>+32.0183</td>
<td>491.683</td>
</tr>
<tr>
<td>Boiling point of pure water</td>
<td>373.15</td>
<td>+100</td>
<td>+80</td>
<td>+212</td>
<td>571.67</td>
</tr>
</tbody>
</table>

www.ShimiPedia.ir
Energy Equivalents

The unit of energy in the International System (SI) is the joule, abbreviation J; 1 J = 0.101 971 6 kp m = 0.102 kp m = 0.777 562 ft lbf.

The unit of energy in the metric gravitational system is the kilogram-meter, abbreviation kg m; 1 kg m = 0.006 55 722 679 621 ft·slug = 1 J = 0.737 562 ft lbf.

The Anglo-American unit of energy is the foot pound-force, abbreviation ft lbf; 1 ft lbf = 1.355 82 J = 0.138 357 kp m.

Table of Energy Equivalents

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>J*</th>
<th>kJ</th>
<th>MJ</th>
<th>erg</th>
<th>Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule*</td>
<td>J*</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-8</td>
<td>77778</td>
</tr>
<tr>
<td>1 kilojoule</td>
<td>kJ</td>
<td>10^3</td>
<td>10^-1</td>
<td>10^-4</td>
<td>10^-6</td>
<td>77778</td>
</tr>
<tr>
<td>1 megajoule</td>
<td>MJ</td>
<td>10^6</td>
<td>10^-2</td>
<td>10^-5</td>
<td>10^-7</td>
<td>77778</td>
</tr>
<tr>
<td>1 erg</td>
<td>erg</td>
<td>10^-7</td>
<td>10^-9</td>
<td>10^-12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 watt hour</td>
<td>Wh</td>
<td>2 600</td>
<td>3 600</td>
<td>3 600</td>
<td>3 600</td>
<td>77778</td>
</tr>
<tr>
<td>1 kilowatt hour</td>
<td>kW</td>
<td>3 600</td>
<td>3 600</td>
<td>3 600</td>
<td>3 600</td>
<td>77778</td>
</tr>
<tr>
<td>1 megawatt hour</td>
<td>MW</td>
<td>3 600</td>
<td>3 600</td>
<td>3 600</td>
<td>3 600</td>
<td>77778</td>
</tr>
<tr>
<td>1 kilopound meter</td>
<td>kp m</td>
<td>9 806.65</td>
<td>9 806.65</td>
<td>9 806.65</td>
<td>9 806.65</td>
<td>77778</td>
</tr>
<tr>
<td>1 pound centimeter</td>
<td>lb cm</td>
<td>9 806.65 -10^-3</td>
<td>9 806.65 -10^-3</td>
<td>9 806.65 -10^-3</td>
<td>9 806.65 -10^-3</td>
<td>77778</td>
</tr>
<tr>
<td>1 calorie</td>
<td>cal</td>
<td>4.1868</td>
<td>4.1868</td>
<td>4.1868</td>
<td>4.1868</td>
<td>1163</td>
</tr>
<tr>
<td>1 kilocalorie</td>
<td>kcal</td>
<td>4.1868 -10^3</td>
<td>4.1868</td>
<td>4.1868</td>
<td>4.1868</td>
<td>1163</td>
</tr>
</tbody>
</table>

Table of Metric Horsepower Equivalents

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>kW m</th>
<th>Wh</th>
<th>kp m</th>
<th>ft lbf</th>
<th>British thermal unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule*</td>
<td>J*</td>
<td>2.777 8 -10^-3</td>
<td>2.777 8 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 kilojoule</td>
<td>kJ</td>
<td>2.777 8 -10^-3</td>
<td>2.777 8 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 megajoule</td>
<td>MJ</td>
<td>2.777 8 -10^-3</td>
<td>2.777 8 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>1.019 72 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 erg</td>
<td>erg</td>
<td>2.777 8 -10^-5</td>
<td>2.777 8 -10^-5</td>
<td>1.019 72 -10^-5</td>
<td>1.019 72 -10^-5</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 watt hour</td>
<td>Wh</td>
<td>1</td>
<td>10^-4</td>
<td>3.600 98 -10^-4</td>
<td>3.600 98 -10^-4</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 kilowatt hour</td>
<td>kW</td>
<td>1</td>
<td>10^-3</td>
<td>3.600 98 -10^-3</td>
<td>3.600 98 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 megawatt hour</td>
<td>MW</td>
<td>1</td>
<td>10^-2</td>
<td>3.600 98 -10^-2</td>
<td>3.600 98 -10^-2</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 kilopound meter</td>
<td>kp m</td>
<td>2.774 069 -10^-4</td>
<td>2.774 069 -10^-4</td>
<td>1</td>
<td>10^-1</td>
<td>2 424 28</td>
</tr>
<tr>
<td>1 pound centimeter</td>
<td>lb cm</td>
<td>2.774 069 -10^-4</td>
<td>2.774 069 -10^-4</td>
<td>1</td>
<td>10^-1</td>
<td>2 424 28</td>
</tr>
<tr>
<td>1 calorie</td>
<td>cal</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 kilocalorie</td>
<td>kcal</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>10^-1</td>
</tr>
<tr>
<td>1 metric horsepower second</td>
<td>KS s</td>
<td>2.042 05 -10^-3</td>
<td>2.042 05 -10^-3</td>
<td>75</td>
<td>75 -10^3</td>
<td>1.756 -10^3</td>
</tr>
<tr>
<td>1 metric horsepower hour</td>
<td>KS h</td>
<td>735 499 -10^-3</td>
<td>735 499 -10^-3</td>
<td>270 000</td>
<td>270 000 -10^3</td>
<td>623 415 -10^3</td>
</tr>
<tr>
<td>1 watt hour</td>
<td>Wh</td>
<td>4.50 -10^-4</td>
<td>4.50 -10^-4</td>
<td>1.634 -10^-4</td>
<td>1.634 -10^-4</td>
<td>3.826 -10^-3</td>
</tr>
<tr>
<td>1 kilowatt hour</td>
<td>kW</td>
<td>1</td>
<td>1</td>
<td>1.634 -10^-3</td>
<td>1.634 -10^-3</td>
<td>3.826 -10^-3</td>
</tr>
<tr>
<td>1 megawatt hour</td>
<td>MW</td>
<td>1</td>
<td>1</td>
<td>1.634 -10^-2</td>
<td>1.634 -10^-2</td>
<td>3.826 -10^-2</td>
</tr>
<tr>
<td>1 British thermal unit</td>
<td>BTU</td>
<td>1</td>
<td>1</td>
<td>1.634 -10^-1</td>
<td>1.634 -10^-1</td>
<td>3.826 -10^-1</td>
</tr>
<tr>
<td>1 furnace</td>
<td>1</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>1.163 -10^-3</td>
<td>10^-1</td>
</tr>
</tbody>
</table>

*1 J = 1 W s = 1 Nm
Mass and Energy Balance

The unit of mass in the International System (SI) is the kilogram, abbreviation kg: 1 kg = 2.204 62 lb.

The Anglo-American unit of mass is the pound, abbreviation lb: 1 lb = 0.453 592 37 kg.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>s</th>
<th>10^-3</th>
<th>10^-6</th>
<th>10^-9</th>
<th>10^-12</th>
<th>10^-15</th>
<th>10^-18</th>
<th>10^-21</th>
<th>10^-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kilogram</td>
<td>kg</td>
<td>1</td>
<td>10^1</td>
<td>10^4</td>
<td>10^7</td>
<td>10^10</td>
<td>10^13</td>
<td>10^16</td>
<td>10^19</td>
<td>10^22</td>
</tr>
<tr>
<td>1 decagram</td>
<td>dag (dag)</td>
<td>10^-2</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 gram</td>
<td>g</td>
<td>10^-3</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 decigram</td>
<td>dg</td>
<td>10^-4</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 centigram</td>
<td>cg</td>
<td>10^-5</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 milligram</td>
<td>mg</td>
<td>10^-6</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 microgram</td>
<td>μg</td>
<td>10^-9</td>
<td>1</td>
<td>10^-3</td>
<td>10^-6</td>
<td>10^-9</td>
<td>10^-12</td>
<td>10^-15</td>
<td>10^-18</td>
<td>10^-21</td>
</tr>
<tr>
<td>1 ton (= 1000 kg)</td>
<td>ton</td>
<td>10^3</td>
<td>1</td>
<td>10^3</td>
<td>10^6</td>
<td>10^9</td>
<td>10^12</td>
<td>10^15</td>
<td>10^18</td>
<td>10^21</td>
</tr>
</tbody>
</table>
Length Equivalents

The unit of length in the International System (SI) is the meter, abbreviation m; 1 m = 1.09361 yd.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>yard</th>
<th>fathom</th>
<th>rod</th>
<th>chain</th>
<th>furlong</th>
<th>mile (US)</th>
<th>mile (nautical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>meter</td>
<td>m</td>
<td>1</td>
<td>0.189</td>
<td>0.056</td>
<td>0.011</td>
<td>0.001</td>
<td>0.0006</td>
<td>0.0003</td>
</tr>
<tr>
<td>decimeter</td>
<td>dm</td>
<td>10</td>
<td>1.89</td>
<td>0.56</td>
<td>0.11</td>
<td>0.001</td>
<td>0.0006</td>
<td>0.0003</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
<td>100</td>
<td>18.9</td>
<td>5.6</td>
<td>1.1</td>
<td>0.01</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>millimeter</td>
<td>mm</td>
<td>1000</td>
<td>189</td>
<td>56</td>
<td>11</td>
<td>1</td>
<td>0.6</td>
<td>0.034</td>
</tr>
<tr>
<td>micrometer</td>
<td>μm</td>
<td>10000</td>
<td>1890</td>
<td>560</td>
<td>110</td>
<td>10</td>
<td>0.66</td>
<td>0.0342</td>
</tr>
<tr>
<td>kilometer</td>
<td>km</td>
<td>1000</td>
<td>1890</td>
<td>560</td>
<td>110</td>
<td>10</td>
<td>0.66</td>
<td>0.0342</td>
</tr>
</tbody>
</table>

Special Notes
- 1 furlong = 220 yards
- 1 nautical mile = 1852 meters

Example: 1 m = 100 cm = 1000 mm = 0.001 km

Some other Anglo-American units of length are:
- 1 mile = 0.001 furlong
- 1 yard = 3 feet
- 1 foot = 12 inches

The units used in the United Kingdom are prefixed UK.

The Anglo-American units are prefixed US.

International nautical mile = US nautical mile (1 n mile = 1 US mile = 1852 m)
<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>F_a</th>
<th>$N\cdot m^2$</th>
<th>$N\cdot m^3$</th>
<th>bar</th>
<th>MN</th>
<th>kPa</th>
<th>$kN\cdot m$</th>
<th>$kN\cdot m^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal</td>
<td>Pa</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Newton</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kilogram Force</td>
<td>kgf</td>
<td>9.80665</td>
<td>9.80665×10^{-1}</td>
<td>9.80665×10^{-2}</td>
<td>9.80665×10^{-3}</td>
<td>9.80665×10^{-4}</td>
<td>9.80665×10^{-5}</td>
<td>9.80665×10^{-6}</td>
<td>9.80665×10^{-7}</td>
</tr>
<tr>
<td>Kilopascal</td>
<td>kPa</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Megapascal</td>
<td>MPa</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
</tr>
</tbody>
</table>

Pressure and Stress Equivalents

The unit of pressure and stress in the International System (SI) is the pascal, abbreviation Pa, $1 \text{ Pa} = 1 \text{ N/m}^2 = 0.1019716 \text{ kPa} = 0.1000204 \text{ atm} = 9.86923 \text{ lbf/ft}^2$.

The English and metric gravitational systems are the pound per square inch, abbreviation psi, $1 \text{ psi} = 6.89475 \text{ kPa} = 6.89475 \times 10^{-1} \text{ atm} = 1.422338 \times 10^{-1} \text{ bar} = 1.933677 \times 10^{-1} \text{ MPa} = 1.450377 \times 10^{-1} \text{ kN/m}^2$.
Force Equivalents

The unit of force in the International System (SI) is the newton, abbreviation N; 1 N = 0.102 kg = 0.224 lb. The unit of force in the metric gravitational system is the kilogram, abbreviation kg; 1 kg = 9.806 lb. The Anglo-American unit of force is the pound, abbreviation lb; 1 lb = 4.448 N.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>N</th>
<th>KN</th>
<th>MN</th>
<th>nN</th>
<th>dyne</th>
<th>sn</th>
<th>kp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 newton</td>
<td>N</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 kilonewton</td>
<td>kN</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>10^{-6}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 meganewton</td>
<td>MN</td>
<td>10^{6}</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 millinewton</td>
<td>mN</td>
<td>10^{-6}</td>
<td>10^{3}</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>1 dyne</td>
<td>dyne</td>
<td>10^{-9}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>1 sn</td>
<td>sn</td>
<td>10^{-12}</td>
<td>10^{-9}</td>
<td>10^{-9}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>1</td>
<td>10^{9}</td>
</tr>
<tr>
<td>1 poundal</td>
<td>pdl</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 pound-force</td>
<td>lb</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>4.448</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 ounce-force</td>
<td>ozf</td>
<td>2.780</td>
<td>2.780</td>
<td>2.780</td>
<td>2.780</td>
<td>2.780</td>
<td>2.780</td>
<td>1.01972</td>
</tr>
</tbody>
</table>

Examples

1 N = 0.101972 kp; 1 kg = 1.01972 N; 1 lb = 4.448 N; 1 tonf = 2.2046 lb.

Unit Abbreviation

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>N</th>
<th>KN</th>
<th>MN</th>
<th>nN</th>
<th>dyne</th>
<th>sn</th>
<th>kp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 newton</td>
<td>N</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 kilonewton</td>
<td>kN</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>10^{-6}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 meganewton</td>
<td>MN</td>
<td>10^{6}</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
<td>1.01972</td>
</tr>
<tr>
<td>1 millinewton</td>
<td>mN</td>
<td>10^{-6}</td>
<td>10^{3}</td>
<td>10^{3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>1 dyne</td>
<td>dyne</td>
<td>10^{-9}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>1 sn</td>
<td>sn</td>
<td>10^{-12}</td>
<td>10^{-9}</td>
<td>10^{-9}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>1</td>
<td>10^{9}</td>
</tr>
</tbody>
</table>

Examples

1 N = 10^{-9} sn; 1 tonf = 2.2046 lb.
منتشر شده در
وبسایت جامع مهندسی شیمی – دانشگاه آزاد اسلامی واحد دزفول

WWW.CHEDEZ.COM

بهار 1388