Infrared Tables (short summary of common absorption frequencies)

The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers, cm⁻¹. Specific substituents may cause variations in absorption frequencies. Absorption intensities may be stronger or weaker than expected, often depending on dipole moments. Additional bands may confuse the interpretation. In very symmetrical compounds there may be fewer than the expected number of absorption bands (it is even possible that all bands of a functional group may disappear, i.e. a symmetrically substituted alkyne!). Infrared spectra are generally informative about what functional groups are present, but not always. The ¹H and ¹³C NMR's are often just as informative about functional groups, and sometimes even more so in this regard. Information obtained from one spectroscopic technique should be verified or expanded by consulting the other spectroscopic techniques.

IR Summary - All numerical values in the tables below are given in wavenumbers, cm⁻¹

Bonds to Carbon (stretching wave numbers)

Stronger dipoles produce more intense IR bands and weaker dipoles produce less intense IR bands (sometimes none).

Bonds to Hydrogen (stretching wave numbers)

Carbonyl Highlights (stretching wave numbers)

sp² C-H bend patterns for alkenes

sp² C-H bend patterns for aromatics

sp- С-н	bend patterns for aike	enes	sp ⁻ C-H bend patterns for aromatics			
alkene substitution pattern	descriptive alkene term	absorption frequencies (cm ⁻¹) due to sp ² CH bend	aromatic substitution pattern	descriptive aromatic term	absorption frequencies (cm ⁻¹) due to sp ² CH bend	
c = c	monosubstituted alkene	985-1000 900-920	х	monosubstituted aromatic	690-710 730-770	
C = C	cis disubstituted alkene	675-730 (broad)	×	ortho disubstituted aromatic	735-770	
C = C	trans disubstituted alkene	960-990	X X			
C = C	geminal disubstituted alkene	1 880-900	х	meta disubstituted aromatic	680-725 750-810 880-900 (sometimes)	
R C R	trisubstituted alkene	790-840	x—————————————————————————————————————	para disubstituted aromatic	790-840	
C = C	tetrasubstituted alkene	none	that show up betwee pictures for compa	ds have characteristic verse 1650-2000 cm ⁻¹). Sarison (not here). A str ver up most of this regi	Some books provide ong C=O peak will	
	WWV	v.Sh	imiPed	dia.ir		

IR Flowchart to determine functional groups in a compound (all values in cm⁻¹).

deshielding side = less electron rich (inductive & resonance)

shielding side = more electron rich (inductive & resonance)

Calculation of chemical shifts for protons at sp³ carbons

Estimation of sp³ C-H chemical shifts with multiple substituent parameters for protons within 3 C's of consideration.

 α = directly attached substituent, use these values when the hydrogen and substituent are attached to the same carbon

 β = once removed substituent, use these values when the hydrogen and substituent are on adjacent (vicinal) carbons

 γ = twice removed substituent, use these values when the hydrogen and substituent have a 1,3 substitution pattern

X = substituent	α	β	γ
R- (alkyl)	0.0	0.0	0.0
R ₂ C=CR- (alkenyl)	0.8	0.2	0.1
RCC- (alkynyl)	0.9	0.3	0.1
Ar- (aromatic)	1.4	0.4	0.1
F- (fluoro)	3.2	0.5	0.2
Cl- (chloro)	2.2	0.5	0.2_
Br- (bromo)	2.1	0.7	0.2
<u>I- (iodo)</u>	<u> </u>	0.9	0.1_
HO- (alcohol)	2.3	0.3	0.1
RO- (ether)	2.1	0.3	0.1
epoxide	1.5	0.4	0.1
R ₂ C=CRO- (alkenyl ether)	2.5	0.4	0.2
ArO- (aromatic ether)	2.8	0.5	0.3
RCO ₂ - (ester, oxygen side)	2.8	0.5	0.1
ArCO ₂ - (aromatic ester, oxygen side)	3.1	0.5	0.2
ArSO ₃ - (aromatic sulfonate, oxygen)	2.8	0.4	0.0
H ₂ N- (amine nitrogen)	1.5	0.2	0.1
RCONH- (amide nitrogen)	2.1	0.3	0.1
O_2N - (nitro)	3.2	0.8	0.1
HS- (thiol, sulfur)	1.3	0.4	0.1
RS- (sulfide, sulfur)	1.3	0.4	0.1
OHC- (aldehyde)	1.1	0.4	0.1
RCO- (ketone)	1.2	0.3	0.0
ArCO- (aromatic ketone)	1.7	0.3	0.1_
HO ₂ C- (carboxylic acid)	1.1	0.3	0.1
RO ₂ C- (ester, carbon side)	1.1	0.3	0.1
H ₂ NOC- (amide, carbon side)	1.0	0.3	0.1
ClOC- (acid chloride)	1.8	0.4	0.1
NC- (nitrile)	1.1	0.4	0.2
RSO- (sulfoxide)	1.6	0.5	0.3
RSO ₂ - (sulfone)	1.8	0.5	0.3

Starting value and equations for CH₃'s

$$\delta CH_3 = 0.9 + \alpha \qquad H_3C-\alpha$$

$$\delta CH_3 = 0.9 + \Sigma(\beta + \gamma) \qquad H_3C - C_{\beta} - C_{\gamma} - C_{\beta}$$

 $\boldsymbol{\Sigma}$ is the summation symbol for all substituents considered

Starting value and equation for CH2's

In a similar manner we can calculate chemical shifts for methylenes (CH₂) using the following formula

$$\delta \, \mathrm{CH_2} = 1.2 \, + \, \sum (\alpha \, + \beta \, + \, \gamma) \qquad \begin{matrix} \mathrm{H} \\ \mathrm{H-C_\alpha-C_\beta-C_\gamma-} \end{matrix}$$

 Σ is the summation symbol for all substituents considered

Starting value and equation for CH's

In a similar manner we can calculate chemical shifts for methines (CH) using the following formula

$$\delta CH = 1.5 + \sum (\alpha + \beta + \gamma) \qquad \begin{array}{c} H \\ -C_{\alpha} - C_{\beta} - C_{\gamma} \end{array}$$

 Σ is the summation symbol for all substituents considered

a. methylene b. methylene d. methyl
$$HO$$
 CH_2 CH_3 H_3C H_2C H_3C H_2C H_3C H_2C H_3C H

Calculations are generally close to actual chemical shifts for a single substituent, but are less reliable as the number of substituent factors goes up. Multiple substituent factors tend to overestimate an actual chemical shift.

a. methine =
$$1.5 + (1.4)_{\alpha} + (2.3)_{\alpha} + (0.2)_{\beta} = 5.4$$
 ppm actual = 5.2

d. methyl =
$$0.9 + (0.1)_{\alpha} = 1.0$$
 ppm
actual = 1.0

b. methylene =
$$1.2 + (1.5)_{\alpha} + (0.4)_{\beta} + (0.3)_{\beta} = 3.4$$
 ppm actual = 3.0 and 3.2

e. methylene =
$$1.2 + (0.3)_{\alpha} = 1.5$$
 ppm actual = 1.7

c. methyl =
$$0.9 + (1.5)_{\alpha} = 2.4$$
 ppm
actual = 2.6

f. methylene = 1.2. +
$$(1.7)_{\alpha}$$
 = 2.9 ppm
actual = 2.9

Estimated chemical shifts for protons at alkene sp² carbons

Substituent	α geminal	α_{cis}	α_{trans}
H- Hydrogen	0.0	0.0	0.0
R- Alkyl	0.5	-0.2	-0.3
C ₆ H ₅ CH ₂ - Benzyl	0.7	-0.2	-0.2
X-CH ₂ - Halomethyl	0.7	0.1	0.0
(H)/ROCH ₂ -alkoxymethyl	0.6	0.0	0.0
$\frac{\text{dikoxy fieldy f}}{(H)_2/R_2\text{NCH}_2}$ aminomethyl	0.6	-0.1	-0.1
RCOCH ₂ -	0.7	-0.1	-0.1
<u>α-keto</u> NCCH ₂ -	0.7	-0.1	-0.1
$\frac{\alpha\text{-cyano}}{R_2C=CR-}$	1.2	0.0	0.0
Alkenyl C ₆ H ₅ -	1.4	0.4	-0.1
Phenyl F-	1.5	-0.4	-1.0
Fluoro Cl- Chloro	1.1	0.2	0.1
Br- Bromo	1.1	0.4	0.6
I- Iodo	1.1	0.8	0.9
RO- akoxy (ether)	1.2	-1.1	-1.2
RCO ₂ - O-ester	2.1	-0.4	-0.6
$\frac{\text{S-ester}}{(H)_2/R_2N}$ N-amino	0.8	-1.3	-1.2
RCONH- N-amide	2.1	-0.6	-0.7
O ₂ N- Nitro	1.9	1.3	0.6
RS- Thiol	1.1	-0.3	-0.1
OHC- Aldehyde	1.0	1.0	1.2
ROC- Ketone	1.1	0.9	0.7
HO ₂ C- C-acid	0.8	1.0.	03
RO ₂ C- C-ester	0.8	1.0	0.5
H ₂ NOC- C-amide	0.4	1.0	0.5
NC- Nitrile	0.3	0.8	0.6

Example Calculation

$$\begin{array}{c} c & d & e \\ b & H & H & H \\ C = C & C = C \\ a & H & O - C & H & f \\ O & \\ \delta_a = 5.2 + (-0.4) = 4.8 \\ & actual = 4.9 & (J = 14, 1.6 \text{ Hz}) \\ \delta_b = 5.2 + (-0.6) = 4.6 \\ & actual = 4.6 & (J = 6, 1.6 \text{ Hz}) \\ \delta_c = 5.2 + 2.1 = 7.3 \\ & actual = 7.4 & (J = 14, 6 \text{ Hz}) \\ \delta_d = 5.2 + 0.8 = 6.0 \\ & actual = 6.2 & (J = 18, 11 \text{ Hz}) \\ \delta_e = 5.2 + 0.5 = 5.7 \\ & actual = 5.8 & (J = 11, 1.4 \text{ Hz}) \\ \delta_f = 5.2 + 1.0 = 6.2 \\ & actual = 6.4 & (J = 18, 1.4 \text{ Hz}) \\ \end{array}$$

Estimated chemical shifts for protons at aromatic sp 2 carbons

Substituent	α ortho	α meta	α para
H-	0.0	0.0	0.0
Hydrogen	0.0	0.0	0.0
CH ₃ -	-0.2	-0.1	-0.2
Methyl			
CICH ₂ -	0.0	0.0	0.0
Cholromethyl			
Cl ₃ C-	0.6	0.1	0.1
Halomethyl			
HOCH ₂ -	-0.1	-0.1	-0.1
Hydroxymethyl			
R ₂ C=CR-	0.1	0.0	-0.1
Alkenyl			
$\overline{\mathrm{C_6H_5}}$ -	1.4	0.4	-0.1
Phenyl			
F-	-0.3	0.0	-0.2
Fluoro			
Cl-	0.0	0.0	-0.1
Chloro			
Br-	0.2	-0.1	0.0
Bromo	0.4	0.2	0.0
[- 	0.4	-0.2	0.9
Iodo HO-	-0.6	-0.1	-0.5
Hydroxy	-0.0	-0.1	-0.3
RO-	-0.5	-0.1	-0.4
Alkoxy	0.5	0.1	0.1
RCO ₂ -	-0.3	0.0	-0.1
O-ester			
(H) ₂ /R ₂ N-	-0.8	-0.2	-0.7
N-amino			
RCONH-	0.1	-0.1	-0.3
N-amide			
$\overline{\mathrm{O_2N}}$ -	1.0	0.3	0.4
Nitro			
RS-	-0.1	-0.1	-0.2
thiol/sulfide			
OHC-	0.6	0.2	0.3
Aldehyde	0.6	0.1	0.2
ROC-	0.6	0.1	0.2
Ketone	0.0	0.2	0.3
HO ₂ C-	0.9	0.2	0.3
C-acid RO ₂ C-	0.7	0.1	0.2
	0.7	0.1	0.2
C-ester H ₂ NOC-	0.6	0.1	0.2
C-amide	0.0	0.1	0.2
NC-	0.4	0.2	0.3
Nitrile	0.7	0.2	0.5

Real Examples of Combination Effects on Chemical Shifts

electronegativity and π bond

electronegative substituent and distance from protons

multiple substituents

CH₄ CH₃Cl

$$\uparrow$$
 \uparrow \uparrow \downarrow $0.2 \leftarrow \Delta = 2.8 \longrightarrow 3.0 \leftarrow \Delta = 2.3 \longrightarrow$

$$CH_2Cl_2$$

$$5.3 \leftarrow \Delta = 1.9 \rightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

alkene substituent resonance and inductive effects

3.0

aromatic resonance and inductive effects

 π bond anisotropy effect on aromatic protons.

produces deshielding Extra electron density via resonance produces shielding effect on aromatic protons, especially at ortho/para positions.

Withdrawal of electron density via resonance produces deshielding effect on aromatic protons, especially at ortho/para positions.

$$R_2N-H$$
 amine $H = 1-5$ enol $H = 10-17$ $H-O$
 $C=C$
 $R-C$
 NH_2
 $C=C$
 NH_2
 $C=C$
 NH_2
 $C=C$
 NH_2

Protons in this environment have a small cancellation of the external magnetic field, $B_{\rm o}$, and produce a smaller energy transition by that tiny amount.

Protons in this environment have a small additional increment added to the external magnetic field, B_o, and produce a higher energy transition by that tiny amount.

J = coupling constant small difference in energy due to differing neighbor's spin (in Hz)

N + 1 rule (N = # neighbors) # peaks = N + 1 = 1 + 1 = 2 peaks

δ (ppm)

2. Two nearest neighbor protons (both on same carbon or one each on separate carbons)

3. Three nearest neighbor protons (on same carbon, or two on one and one on another, or one each on separate carbons)

Splitting patterns when the N+1 rule works (common, but not always true)

Multiplets when the N + 1 rule works (all J values are equal).

Combinations or these are possible.

dd = doublet of doublets; ddd = doublet of doublets; dddd = doublet of doublet of doublets; dt = doublet of triplets td = triplet of doublets; etc.

Spectroscopy Data Tables **Typical Coupling Constants**

l Coupling Constants	Range	Typical		Range	Typical
H _b	0-30 Hz	14 Hz	H_{a} $C=C$	0-3 Hz	1 Hz
geminal protons - can have different and split one another if they are dia		s	cis / allylic coupling, notice through 4 bonds		
	Range	Typical		Range	Typical
$\begin{array}{ccc} H_a & H_b \\C-C & \\ & \end{array}$	6-8 Hz	7 Hz	$C=C$ $C-H_b$	0-3 Hz	1 Hz
icinal protons are on adjacent atoms, rotating coupling averages out to abo			trans / allylic coupling, notice through 4 bonds		
0 17 1 1	Range	Typical		Range	Typical
$H_{a} H_{b} \theta = dihedral angle$ $C C H$	0-12 Hz	7 Hz	C—C H _a H _b	9-13 Hz	10 Hz
	depends of	n dihedral	H_a' H_b		
Н	angle, see Karplus ed		sp^2 vicinal coupling (different π bonds)		
	Range	Typical		Range	Typical
$\begin{array}{c c} H_a & H_b \\ -C-C-C \\ \end{array}$	0-1 Hz	0 Hz	$ \stackrel{H_a}{{{\text{\tiny L}}}}$ $\stackrel{H_b}{{{\text{\tiny L}}}}$	1-3 Hz	2 Hz
protons rarely couple through 4 chem unless in a special, rigid shapes (i.e. V			sp ³ vicinal aldehyde coupling		
	Range	Typical		Range	Typical
C=C	0-3 Hz	2 Hz	H_a C C	5-8 Hz	6 Hz
$/$ H_b			_c″ °o		
sp ² geminal coupling			sp ² vicinal aldehyde coupling		
	Range	Typical		Range	Typical
H_{a} $C=C$	5-11 Hz	10 Hz	$- \overset{H_a}{\leftarrow} C = C - H_b$	2-3 Hz	2 Hz
sp ² cis (acylic) coupling (always smaller than the trans isomer)			sp / propargylic coupling notice through 4 bonds		
Н ₂	Range	Typical		Range	Typical
$C = C$ H_b	11-19 Hz	17 Hz	$\begin{array}{ccc} & H_a & H_b \\ -C - C \equiv C - C - \end{array}$	2-3 Hz	3 Hz
sp ² trans coupling (always larger than the cis isomer)			bis-propargylic coupling notice through 5 bonds		
, Н	Range	Typical	ortho, meta and→ H	Range	Typica
$C=C$ $C-H_b$	4-10 Hz	7 Hz	para coupling to this proton	ortho 6-10 Hz	9 Hz
$/$ $C-H_b$	4-10 HZ	/ fiz		meta 2-3 Hz	2 Hz
/ \			H _{meta}	para 0-1 Hz	0 Hz

When J values are less than 1 Hz, it is often difficult to resolve them and a peak may merely appear wider and shorter.

Similar chemical shift information presented in a different format. Remember, proton decoupled carbons appear as singlets. When carbons are coupled to their hydrogens, carbons follow the N+1 rule. Methyls = q, methylenes = t, methines = d, and carbons without hydrogen appear as singlets = s. DEPT provides the same information. Carbon chemical shifts are spread out over a larger range than proton chemical shifts (they are more dispersed), so it is less likely that two different carbon shifts will fall on top of one another. The relative positions of various types of proton and carbon shifts have many parallel trends (shielded protons tend to be on shielded carbons, etc.)

Simple alkane carbons	$CH_3 - CH_3 - G$ $d \approx 0 - 30 \text{ ppm}$ (q)	$CH_2 - $ $d \approx 20 - 40 \text{ ppm}$ (t)	—CH— d ≈ 30 - 50 ppm (d)	$ \begin{array}{c c} & \\$			
sp ³ carbon next to oxygen	CH_3 -O d ≈ 50 - 60 ppm	CH ₂ -O	—СН-О	c-o			
	(q)	$d \approx 55 - 80 \text{ ppm}$ (t)	$d \approx 60 - 80 \text{ ppm}$ (d)	$d \approx 70 - 90 \text{ ppm}$ (s)			
sp ³ carbon next to nitrogen	CH ₃ -N	CH ₂ -N	—CH-N	—C-N			
next to introgen	$d \approx 10 - 50 \text{ ppm}$ (q)	$d \approx 35 - 55 \text{ ppn}$ (t)	$d \approx 50 - 70 \text{ ppm}$ (d)	d ≤ 50 - 70 ppm (s)			
sp ³ carbon next to bromine or chloric	ne	CH ₂ −X \$\sim 25 - 50 ppm	—CH—X	——————————————————————————————————————			
(X = Cl, Br)		(t)	d ≈ 60 - 80 ppm (d)	d ≈ 60 - 80 ppm (s)			
sp carbon (alky	nes) $-C \equiv C - \delta \approx 70 - 90$		sp carbon (nitriles)	—C≡N δ ≈ 110 - 125 ppm			
sp ² carbon (alke and aromatics)	nes C-1	н С-н	C-X	C-X			
	$\delta \approx 100 - 140 \text{ ppm}$ $\delta \approx 140 - 160^{+} \text{ ppm}$ simple sp ² carbon resonance donation moves δ lower, resonance withdrawal moves δ higher resonance with δ higher resonance with δ higher resonance with δ higher resonance with δ higher resonance						
$-c_{\mathbf{v}}^{\prime\prime}$		-c' ₀		$-c_{\mathbf{R}}^{\prime\prime}$			
$\delta \approx 160 - 100$ carboxyl c (acids, ester	arbons	$\delta \approx 180 - 21$ aldehyde carbon values when contains (d)	ns, lower ket	≈ 180 - 220 ppm one carbons, lower ues when conjugated (s)			

sp³ Carbon Chemical Shift Calculations

Calculations for sp³ carbon ¹³C chemical shifts of functionalized carbon skeletons can be performed starting from the actual shifts found in the corresponding alkane skeleton, and introducing corrections factors based on the functionality present in the molecule. This assumes that the alkane ¹³C shifts are available, which is why several examples are provided below.

Examples of C_n alkanes as possible starting points for calculation ¹³C shifts in ppm.

Steric Corrections for sp³ carbon chemical shift calculations

The attached C_o carbons are: The calculated carbon atom is: primary secondary tertiary quaternary -3.4 primary 0 0 -2.5 -7.5 secondary 0 -3.7 -9.5 -15.0 tertiary -1.5 -8.4 -15.0 -25.0 quaternary

Approximate 13 C shift calculation from scratch.

 $\delta_C = -(2) + 9x(\#\alpha + \#\beta) - 2x(\#\gamma) + steric corrections$

$$C1 = -2 + 9(1+3) - 2(2) + (-3) = 29 (actual = 28.3)$$

$$C2 = -2 + 9(4+2) - 2(2) + [3x(-1.5) + (-15.0)] = 28 (actual = 34.0)$$

$$C3 = -2 + 9(3+5) - 0(2) + [(-9.5) + (-15.0)] = 45 (actual = 47.9)$$

$$C4 = -2 + 9(3+2) - 3(2) + (-9.5) = 27 (actual = 27.2)$$

$$C5 = -2 + 9(1+2) - 2(2) + (-1) = 20 (actual = 19.5)$$

$$C6 = -2 + 9(1+2) - 5(2) + (-1) = 14 (actual = 8.5)$$

$\frac{13}{12}$ C shifts for various carbon alkane skeletons - useful starting points for calculating sp3 carbon chemical shifts

$$X \sim \alpha \sim \beta$$

$$R \xrightarrow{\alpha} \beta$$

	X is attached to	a terminal carbo	n atom (ppm)	X is attached to an internal carbon atom (ppm)			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction	
——CH ₃	9	9	-2	6	8	-2	
CH ₂ CH ₃	18	7	-2	9	6	-2	
——CH(CH ₃) ₂	26	4	-2	14	3	-2	
——C(CH ₃) ₃	32	2	-2	20	1	-2	
——С==CH ₂	20	6	-1	15	5	-1	
—с≡сн	5	5	-4	2	6	-4	
	23	9	-2	17	7	-2	
		! ! !	1 1 1		 		

	X is attached to	a terminal carbo	on atom (ppm)	X is attached to an internal carbon atom (ppm)			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction	
—-ОН	48	10	-6	44	7	-4	
——OR	60	7	-6	57	5	-6	
oc	51	6	-6	49	5	-6	
NH ₂	28	10	-5	24	8	-5	
NH(CH ₃)	38	8	-5	32	5	-4	
N(CH ₃) ₂	45	5	-5	37	3	-4	
HCR	26	7	-5	21	5	-5	
NO ₂	62	5	-5	58	2	-5	

	X is attached to	a terminal carbo	on atom (ppm)	X is attached to an internal carbon atom (ppm)			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction	
——F	70	8	-7	67	5	-7	
——сі	31	10	-5	36	8	-5	
Br	20	10	-4	28	10	-4	
 I	-7	11	-2	7	11	-2	
т_о_	30	0	-3	24	-1	-3	
CH.	31	1	-3	26	0	-3	
O OH	22	2	-3	18	1	-3	

	X is attached to	a terminal carbo	n atom (ppm)	X is attached to an internal carbon atom (ppm)			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction	
C_OCH3	20	2	-3	16	2	-3	
CNH ₂	25	3	-3	19	2	-3	
—_c <u>==</u> N	3	3	-3	3	3	-3	
C_CI	33	2	-3	30	2	-3	
SH	11	10	-3	12	8	-3	
——SR	22	8	-3	20	6	-3	

Additional starting point for calculating 13C chemical shifts (ppm) of substituted benzene rings (just a few possibilities)

Additional starting point for calculating. 13C chemical shifts (ppm) of substituted alkenes (just a few possibilities)

Common fragmentation patterns in mass spectroscopy

1. Branch next to a π bond

2. Branch next to an atom with a lone pair of electrons

X lone pair electrons partially fill in loss of electrons at carbocation site via resonance. This is a common fragmentation for any atom that has a lone pair of electrons (oxygen = alcohol, ether, ester; nitrogen = amine, amide, sulfur = thiol or sulfide, etc.). Alcohols often lose water (M-18) and primary amines can lose ammonia (M-17).

3. Branch next to a carbonyl (C=O) bond...and possible subsequent loss of carbon monoxide, CO

R₁ or R₂ can be lost from aldehydes, ketones, acids, esters, amides...etc.

An oxygen lone pair partially fill in the loss of electrons at the carbocation site via resonance. This is a common fragmentation pattern for any carbonyl compound and can occur from either side, though some are more common than others.

subsequent loss of CO is possible after α fragmentation so not only can you see loss of an α branch you can see the mass of an α branch.

4. McLafferty Rearrangement

This is another common fragmentation pattern for carbonyl compounds (and other pi systems as well: alkenes, aromatics, alkynes, nitriles, etc.). If the pi bond has at least 3 additional nonhydrogen atoms attached and a hydrogen on the "gama" atom, the branch can curve around to a comfortable 6 atom arrangement and the pi bond can pick up a hydrogen atom and cut off a fragment between the C_{α} and C_{β} positions. The positive charge can be seen on either fragment and usually the fragments have an even mass (unless there is an odd number of nitrogen atoms).

Knowing these few fragmentation patterns will allow you to make many useful predictions and interpretations. Loss of small molecules, via elimination is common: $H_2O = 18$, $H_2S = 34$, $CH_3OH = 32$, $C_2H_5OH = 46$, $NH_3 = 17$, $CH_3CO_2H = 62$, HF = 20, HCl = 36/38, HBr = 80/82, etc.

A sampling of unusual and/or miscellaneous peaks that are commonly seen, (even when they don't make sense).

 CH_2

$$H_2N \longrightarrow C \longrightarrow O$$

mass = 44

 \bigoplus

RO $\longrightarrow C \longrightarrow O$

mass = 45 (R = H)

59 (R = CH₃)

 $73 (R = CH_2CH_3)$

 \oplus

Loss of small molecules via elimination reactions.

H_2O	H_2S	CH ₃ OH	C ₂ H ₅ OH	NH_3	CH ₃ CO ₂ H	HF	HCl	HBr
mass = 18	34	32	46	17	62	20	36 38	80 82

McLafferty Possibilities

Notice! even masses

$$CH_2$$
 $R_1/$
 $VATION VARIABLE MASS,$
 $VATION VARIAB$

$$\begin{pmatrix} R_2 \\ \parallel \\ R_1 \end{pmatrix} \oplus = \begin{pmatrix} R \\ \parallel \\ CH_2 \end{pmatrix}$$
variable mass,
$$mass = 28 (R = 42 (R = 42))$$

 $\begin{aligned} \text{mass} &= 28 \ (\text{R} = \text{H}) \\ &+ 42 \ (\text{R} = \text{CH}_3) \\ &+ 56 \ (\text{R} = \text{CH}_2\text{CH}_3) \\ &+ 70 \ (\text{R} = \text{C}_3\text{H}_7) \end{aligned}$

Similar Patterns

$$R$$
 CH_2
 H
 R_2
 R_1
 H_2
 H_2
 H_2

$$\begin{array}{cccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

$$\mathbb{R}$$
 \mathbb{H} \mathbb{H}

mass =
$$92 (R = H)$$

 $106 (R = CH_3)$
 $120 (R = CH_2CH_3)$
 $134 (R = C_3H_7)$

$$\begin{array}{c|c} H & H \\ \hline C & R_2 \\ \hline R_1 \\ \hline H_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} H & \bigoplus & H \\ C & & \begin{pmatrix} R_2 \\ \parallel \\ C \end{pmatrix} \\ C & CH_2 \end{array}$$

mass = 40 (R = H)

$$54$$
 (R = CH₃)
 68 (R= CH₂CH₃)
 82 (R = C₃H₇)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$