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Chapter 1 

The Schrödinger Equation 

 
 
1.1 (a)  F;   (b)  T;   (c)  T.  
 
1.2 (a)  photon /E h hcν λ= = = (6.626 × 10–34 J s)(2.998 × 108 m/s)/(1064 × 10–9 m) =  

1.867 × 10–19 J.  
 (b)  E = (5 × 106 J/s)(2 × 10–8 s) = 0.1 J = n(1.867 × 10–19 J) and n = 5 × 1017. 
 
1.3 Use of photon /E hc λ=  gives 

23 34 8

9
(6.022 10 )(6.626 10  J s)(2.998 10  m/s) 399 kJ

300 10  m
E

−

−
× × ×

= =
×

 

 
1.4 (a)  maxT hν= −Φ =   

(6.626 × 10–34 J s)(2.998 × 108 m/s)/(200 × 10–9 m) – (2.75 eV)(1.602 × 10–19 J/eV) =  
5.53 × 10–19 J = 3.45 eV.  

 (b)  The minimum photon energy needed to produce the photoelectric effect is  
(2.75 eV)(1.602 × 10–19 J/eV) = hν =hc/λ = (6.626 × 10–34 J s)(2.998 × 108 m/s)/λ  
and λ = 4.51 × 10–7 m = 451 nm. 

 (c)  Since the impure metal has a smaller work function, there will be more energy left 
over after the electron escapes and the maximum T is larger for impure Na. 

 

1.5 (a)  At high frequencies, we have / 1b Te ν >>  and the 1−  in the denominator of Planck’s 
formula can be neglected to give Wien’s formula. 

 (b)  The Taylor series for the exponential function is 21 /2! .xe x x= + + +  For 1,x <<  
we can neglect 2x  and higher powers to give 1 .xe x− ≈  Taking /x h kTν≡ , we have for 
Planck’s formula at low frequencies 

 
3 3 3 2

/ 2 / 2 2
2 2 2

1 ( 1) ( / )b T h kT
a h h kT

e c e c h kT cν ν
ν π ν π ν πν

ν
= ≈ =

− −
 

 
1.6 /h mλ = v 137 /h mc= =  137(6.626 × 10–34 J s)/(9.109 × 10–31 kg)(2.998 × 108 m/s) =  

3.32 × 10–10 m = 0.332 nm. 
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1.7 Integration gives 21
0 0 22 ( ) .x gt gt t c= − + + +v  If we know that the particle had position 

0x  at time 0,t  then 21
0 0 0 0 0 22 ( )x gt gt t c= − + + +v  and 21

2 0 0 0 02 .c x gt t= − − v  Substitution 

of the expression for 2c  into the equation for x gives 21
0 0 0 02 ( ) ( ).x x g t t t t= − − + −v  

 

1.8 2 2 2( / )( / ) ( /2 )( / )i t m x V− ∂Ψ ∂ = − ∂ Ψ ∂ + Ψ . For 
2 / ,ibt bmxae e− −Ψ =  we find 

/ t ib∂Ψ ∂ = − Ψ , 1/ 2 ,x bm x−∂Ψ ∂ = − Ψ  and 2 2 1 1/ 2 2 ( / )x bm bm x x− −∂ Ψ ∂ = − Ψ − ∂Ψ ∂  
= 1 1 1 1 2 2 2 22 2 ( 2 ) 2 4bm bm x bm x bm b m x− − − − −− Ψ − − Ψ = − Ψ + Ψ . Substituting into the 
time-dependent Schrödinger equation and then dividing by Ɋ, we get 

 2 1 2 2 2 2( / )( ) ( /2 )( 2 4 )i ib m bm b m x V− −− − Ψ = − − + Ψ + Ψ  and 2 22V b mx= . 

 
1.9 (a)  F;   (b)  F.  (These statements are valid only for stationary states.) 
 

1.10 ψ satisfies the time-independent Schrödinger (1.19). 
2

/ cxx beψ −∂ ∂ =
222 cxbcx e−− ; 

22 2/ 2 cxx bcxeψ −∂ ∂ = − −
2 22 34 4cx cxbcxe bc x e− −+  = 

2 22 36 4cx cxbcxe bc x e− −− + . Equation 

(1.19) becomes  
2 22 2 3( /2 )( 6 4 )cx cxm bcxe bc x e− −− − +  + 

2 22 2 2(2 / ) cx cxc x m bxe Ebxe− −= . 
The x3 terms cancel and 23 /E c m= =   
3(6.626 × 10–34 J s)22.00(10–9 m)–2/4ˊ2(1.00 × 10–30 kg) = 6.67 × 10–20 J. 

 
1.11 Only the time-dependent equation. 
 
1.12 (a)  2 3 2 2| |/| | (2/ ) x bdx b x e dx−Ψ = =  

9 3 9 2 2(0.90 nm)/(3.0 nm) 92(3.0  10  m) (0.90  10  m)  (0.0001  10  m)e− − − − −× × ×  = 3.29 × 10–6. 
 (b)  For 0,x ≥  we have | |x x=  and the probability is given by (1.23) and (A.7) as 

2 nm 2 nm2 3 2 2 / 3 2 / 2 2 3 2 nm
00 0

| | (2 / ) (2 / ) ( /2 /2 /4) |x b x bdx b x e dx b e bx xb b− −Ψ = = − − −∫ ∫  = 
2 / 2 2 2 nm

0( / / 1/2) |x be x b x b−− + +  = 4/3(4/9 2/3 1/2) 1/2e−− + + +  = 0.0753. 

 (c)  Ɋ is zero at x =0, and this is the minimum possible probability density. 

 (d)  
02 3 2 2 / 3 2 2 /

0
| | (2/ ) (2/ ) .x b x bdx b x e dx b x e dx

∞ ∞ −
−∞ −∞

Ψ = +∫ ∫ ∫  Let w = –x in the first 

integral on the right. This integral becomes 
0 2 2 / 2 2 /

0
( ) ,w b w bw e dw w e dw

∞− −
∞

− =∫ ∫  which 

equals the second integral on the right [see Eq. (4.10)]. Hence 
2 3 2 2 / 3 3

0
| | (4 / ) (4 / )[2!/ ( / 2) ]x bdx b x e dx b b

∞ ∞ −
−∞

Ψ = =∫ ∫  = 1, where (A.8) in the 

Appendix was used. 
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1.13 The interval is small enough to be considered infinitesimal (since Ψ  changes negligibly 

within this interval). At t = 0, we have 
2 22 6 1/2 2 2 /| | (32 / ) x cdx c x e dxπ −Ψ = =  

[32/π(2.00 Å)6]1/2(2.00 Å)2e–2(0.001 Å) = 0.000216. 
 

1.14 
1.5001 nm 1.5001 nm2 1 2 / 2 /

1.5000 nm1.5000 nm
| | /2 |

b x a x a
a

dx a e dx e− − −Ψ = = − =∫ ∫ (–e–3.0002 + e–3.0000)/2 =  

4.978 × 10–6. 
 
1.15 (a)  This function is not real and cannot be a probability density. 
 (b)  This function is negative when x < 0 and cannot be a probability density. 
 (c)  This function is not normalized (unless )b π=  and can’t be a probability density. 

 
1.16 (a)  There are four equally probable cases for two children: BB, BG, GB, GG, where the 

first letter gives the gender of the older child. The BB possibility is eliminated by the 
given information. Of the remaining three possibilities BG, GB, GG, only one has two 
girls, so the probability that they have two girls is 1/3. 

 (b)  The fact that the older child is a girl eliminates the BB and BG cases, leaving GB and 
GG, so the probability is 1/2 that the younger child is a girl. 

 
1.17 The 138 peak arises from the case 12C12CF6, whose probability is (0.9889)2 = 0.9779.  

The 139 peak arises from the cases 12C13CF6 and 13C12CF6, whose probability is 
(0.9889)(0.0111) + (0.0111)(0.9889) = 0.02195. The 140 peak arises from 13C13CF6, 
whose probability is (0.0111)2 = 0.000123. (As a check, these add to 1.) The 139 peak 
height is (0.02195/0.9779)100 = 2.24. The 140 peak height is (0.000123/0.9779)100 = 
0.0126. 

 
1.18 There are 26 cards, 2 spades and 24 nonspades, to be distributed between B and D. 

Imagine that 13 cards, picked at random from the 26, are dealt to B. The probability that 
every card dealt to B is a nonspade is 13(12)23 13 624 22 21 14 12

26 25 24 23 16 15 14 26(25) 25 .= =  Likewise, the 

probability that D gets 13 nonspades is 6
25 .  If B does not get all nonspades and D does not 

get all nonspades, then each must get one of the two spades and the probability that each 
gets one spade is 6 6

25 251 13 /25− − = . (A commonly given answer is: There are four 

possible outcomes, namely, both spades to B, both spades to D, spade 1 to B and spade 2 
to D, spade 2 to B and spade 1 to D, so the probability that each gets one spade is 2/4 = 
1/2. This answer is wrong, because the four outcomes are not all equally likely.) 
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1.19 (a)  The Maxwell distribution of molecular speeds;   (b)  the normal (or Gaussian) 
distribution. 

1.20 (a)  Real;   (b)  imaginary;   (c)  real;   (d)  imaginary;   (e)  imaginary;   (f)  real;    
(g)  real;   (h)  real;   (i)  real. 

 
1.21 (a)  A point on the x axis three units to the right of the origin. 
 (b)  A point on the y axis one unit below the origin.  
 (c)  A point in the second quadrant with x coordinate –2 and y coordinate +3. 
 

1.22 2
1 1

1
i i i i

i i i i
= = = = −

−
 

 

1.23 (a)  2 1.i = −    (b)  3 2 ( 1) .i ii i i= = − = −    (c)  4 2 2 2( ) ( 1) 1.i i= = − =     
 (d)  * ( ) 1.i i i i= − =  

 (e)  2(1 5 )(2 3 ) 2 10 3 15 17 7 .i i i i i i+ − = + − − = +  

 (f)  1 3 1 3 4 2 4 14 6 2 14 0.1 0.7 .
4 2 4 2 4 2 16 8 8 4 20

i i i i i i
i i i i i

− − − − − − −
= = = = − −

+ + − + − +
 

 

1.24 (a)  –4   (b)  2i;   (c)  6 – 3i;   (d)  /52 .ie π  
 
1.25 (a)  1, 90°;   (b)  2, π/3;    

(c)  /3 /32 2( 1) .i iz e eπ π= − = −  Since –1 has absolute value 1 and phase ˊ, we have 
/3 (4 /3)2 2 ,i i i iz e e e reπ π π θ= = =  so the absolute value is 2 and the phase is 4ˊ/3 radians.   

 (d)  2 2 1/2 2 2 1/2 1/2| | ( ) [1 ( 2) ] 5 ;z x y= + = + − =   tan / 2 / 1 2y xθ = = − = −  and  
θ = –63.4° = 296.6° = 5.176 radians. 

 
1.26 On a circle of radius 5.  On a line starting from the origin and making an angle of 45° with 

the positive x axis. 
 

1.27 (a)  /21 ;ii e π=    (b)  1 1 ;ie π− =     
(c)  Using the answers to Prob. 1.25(d), we have 1/2 5.1765 ;ie     
(d)  2 2 1/2 1/2[( 1) ( 1) ] 2 ; 180 45 225 3.927r θ= − + − = = ° + ° = ° =  rad;  1/2 3.9272 .ie  

 
1.28 (a)  Using Eq. (1.36) with n = 3, we have 0 1,ie ⋅ =  

(2 /3) cos(2 /3) sin(2 /3) 0.5 3 /2,ie i iπ π π= + = − +  and (4 /3) 0.5 3 /2.ie iπ = − −  
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 (b)  We see that ω in (1.36) satisfies 0* 1,eωω = =  so the nth roots of 1 all have absolute 
value 1. When k in (1.36) increases by 1, the phase increases by 2π/n. 

1.29 cos sin [cos( ) sin( )] cos sin (cos sin )
2 2 2

i ie e i i i i
i i i

θ θ θ θ θ θ θ θ θ θ−− + − − + − + − −
= = = sin θ, 

where (2.14) was used. 

 cos sin [cos( ) sin( )] cos sin cos sin
2 2 2

i ie e i i i iθ θ θ θ θ θ θ θ θ θ−+ + + − + − + + −
= = = cos θ. 

 
1.30 (a)  From ,f ma=  1 N = 1 kg m/s2. 

(b)  1 J = 1 kg m2/s2. 
 

1.31 F =
19 19

1 2
2 12 2 2 13 2

0

2(1.602 10  C)79(1.602 10  C)
4 4 8.854 10  C /N-m )(3.00 10  m)
Q Q

rπε π

− −

− −
× ×

=
( × ×

 = 0.405 N,  

where 2 and 79 are the atomic numbers of He and Au. 
 

1.32 (a)  4 2 3 4 4 5 44 sin(3 ) 2 (12 )cos(3 ) 4 sin(3 ) 24 cos(3 ).x x x x x x x x x+ = +  

 (b)  3 2
1( ) | (8 2) (1 1) 8.x x+ = + − + =  

 
1.33 (a)  T;   (b)  F;   (c)  F;   (d)  T;   (e)  F;   (f)  T. 
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Chapter 2 

The Particle in a Box 
 
 

2.1 (a)  The auxiliary equation is 2 6 0s s  and [ 1 1 24] / 2 2 s and –3. So 
2 3

1 2 .x xy c e c e  

 (b)  Setting x = 0 and y = 0, we get 1 20 c c  (Eq. 1). Differentiation of y gives 
2 3

1 22 3 .x xy c e c e  Setting x = 0 and 1,y  we have 1 21 2 3c c  (Eq. 2). Subtracting 
twice Eq. 1 from Eq. 2, we get 21 5c  and 2 0.2.c  Equation 1 then gives 1 0.2.c  

 

2.2 For 0,y py qy  the auxiliary equation is 2
1 20 ( )( ),s ps q s s s s  where 1s  

and 2s  are the roots. Comparison with Eq. (2.8) shows that 1 2s i  and 2 2 ,s i  so 

the auxiliary equation is 20 ( 2 )( 2 ) 4 5.s i s i s s  Therefore 4p  and 
5.q  The differential equation is 4 5 0.y y y  

 
2.3 (a)  The quadratic formula gives the solutions of the auxiliary equation 2 0s ps q  

[Eq. (2.7)] as 2( 4 ) / 2.s p p q  To have equal roots of the auxiliary equation 

requires that 2 4 0p q . Setting 2 /4q p  in the differential equation (2.6), we have 
2( /4) 0y py p y  (Eq. 1). The auxiliary-equation solution is /2.s p  Thus we 

must show that /2
2

pxy xe  is the second solution. Differentiation gives 
/2 /2

2 /2px pxy e pxe  and /2 2 /2
2 /4.px pxy pe p xe  Substitution in Eq. (1) gives 

the left side of Eq. (1) as /2 2 /2 /2 2 /2 2 /2/4 /2 /4px px px px pxpe p xe pe p xe p xe , 
which equals zero and completes the proof. 

 (b)  The auxiliary equation 2 22 1 ( 1) 0s s s  has roots s = 1 and s = 1. From part 
(a), the solution is 1 2 .x xy c e c xe  

 
2.4 In comparing Eqs. (1.8) and (2.2), y in (2.2) is replaced by x, and x in (2.2) is replaced by 

t. Therefore x and its derivatives in (1.8) must occur to the first power to have a linear 
differential equation.   (a)  Linear;   (b)  linear;   (c)  nonlinear;   (d)  nonlinear; (e)  linear. 

 
2.5 (a)  F;   (b)  F;   (c)  T;   (d)  F (only solutions that meet certain conditions such as being 

continuous are allowed as stationary-state wave functions);   (e)  T. 
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2.6 (a)  Maximum at x = l/2. Minimum at x = 0 and x = l, where the ends of the box are at x = 
0 and l. 
(b)  Maximum at l/4 and 3l/4. Minimum at 0, l/2, and l. 
(c)  Minimum at 0, l/3, 2l/3, and l. Maximum at l/6, l/2, 5l/6. 

 

2.7 (a)  /4/4 2 /4 2
0 0 0| | (2 / ) sin ( / ) (2 / )[ / 2 ( /4 )sin(2 / )] |ll ldx l n x l dx l x l n n x l  =  

1 / 4 (1/2 )sin( /2),n n  where (A.2) in the Appendix was used. 
 (b)  The (1/2 )n  factor in the probability makes the probability smaller as n increases, 

and the maximum probability will occur for the smallest value of n for which the sine 
factor is negative. This value is n = 3. 
(c)  0.25. 
(d)  The correspondence principle, since in classical mechanics the probability is uniform 
throughout the box. 
 

2.8 (a)  The probability is 2 2 2| | (2 / )sin ( / ) (1/Å)sin ( 0.600 / 2) (0.001 Å)dx l x l dx  
= 6.55 × 10–4. The number of times the electron is found in this interval is about  
106(6.55 × 10–4) = 655. 
(b)  The probability ratio for the two intervals is 

2 2sin [ (1.00 / 2.00)] sin [ (0.700 / 2.00)]  = 1.260 and about 1.260(126) = 159 
measurements will be in the specified interval. 

 
2.9 (a)  The number of interior nodes is one less than n.  

-1

0

1

0 0.25 0.5 0.75 1

0

1

0 0.25 0.5 0.75 1

 
 

n = 4(l/2)1/2  

x/l 

n = 4

x/l 

(l/2) 2
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-1

0

1

0 0.2 0.4 0.6 0.8 1

0

1

0 0.2 0.4 0.6 0.8 1
 

 (b)  2 2(2 / )sin (4 / )l x l  and 2( )/ (4 / )(4 / )sin(4 / ) cos(4 / ).d dx l l x l x l   
At x = l/2, 2( )/ (4 / )(4 / )sin(2 )cos(2 ) 0.d dx l l  

 
2.10 (a)  2 2 2 2

upper lower (2 1 ) / 8E E h ml   

3(6.626 × 10–34 J s)2/8(9.109 × 10–31 kg)(1.0 × 10–10 m)2 = 1.81 × 10–17 J. 
 (b)  | | /E h hc  and / | |hc E   

(6.626 × 10–34 J s)(2.998  108 m/s)/(1.81 × 10–17 J) = 1.10 × 10–8 m =110 Å. 
 (c)  Ultraviolet. 
 
2.11 2 2 2/8E n h ml  and 1/2(8 ) /n mE l h . We have 2 /2E mv  = ½(0.001 kg)(0.01 m/s)2 =  

5 × 10–8 J, so n = [8(0.001 kg)(5 × 10–8 J)]1/2(0.01 m)/(6.626 × 10–34 J s) = 3 × 1026. 
 
2.12 upper lowerE E h  (52 – 22) 2 2/8h ml  and 1/2(21 /8 )l h m  

[21(6.626 × 10–34 J s)/8(9.1 × 10–31 kg)(6.0 × 1014 s–1)]1/2 = 1.78 × 10–9 m =1.78 nm. 
 
2.13 2 2 2 2

upper lower ( 1 ) /8 ,E E h n h ml  so 2 2 21 8 / 8 /n ml h ml c h   

8(9.109 × 10–31 kg)(2.00 × 10–10 m)2(2.998 × 108 m/s)/[(8.79 × 10–9 m)(6.626 × 10–34 J s)] 
= 15.  So 2 16n  and n = 4. 

 
2.14 2 2 2 2( ) /8 ,b ah n n h ml  so  is proportional to 2 2.b an n  For n = 1 to 2, 2 2

b an n  is 3 and 

for n = 2 to 3, 2 2
b an n  is 5. Hence for the 2 to 3 transition,  = (5/3)(6.0 × 1012 s–1) =  

10 × 1012 s–1. 
 
2.15 2 2 2 2( ) /8 ,b ah n n h ml  so 2 2 28 /b an n ml h  

8(9.109 × 10–31 kg)(0.300 × 10–9 m)2(5.05 × 1015 s–1)/(6.626 × 10–34 J s) = 5.00.  
The squares of the first few positive integers are 1, 4, 9, 16, 25,…, and the only two 
integers whose squares differ by 5 are 2 and 3. 

n = 5 n = 5(l/2) 2(l/2)1/2  

x/l 

x/l 
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2.16 1 1 2 2 2 2 2

upper lower( ) ( /8 )( ) ( /8 ) ,uh E E h h ml n n h ml k  where k is an integer.  
For 1un n  and 1, 2, 3, ,n  we get the following k values: 

2 2 2 2 2 22 1 3; 3 2 5; 4 3 7; 9,11,13,15, etc.k k k k    
For 3un n  and 1, 2, 3, ,n  we get 

2 2 2 24 1 15; 5 2 21;k k 2 26 3 27; 33, 39, etc.k k  
For 5un n  and 1, 2, 3, ,n  we get 35, 45, 55, etc.k  
The smallest k that corresponds to two different transitions is 15k  for the 1 to 4 
transition and the 7 to 8 transition. 

 
2.17 Each double bond consists of one sigma and one pi bond, so the two double bonds have 4 

pi electrons. With two pi electrons in each particle-in-a-box level, the 4 pi electrons 
occupy the lowest two levels, n = 1 and n = 2. The highest-occupied to lowest-vacant 
transition is from n = 2 to n = 3, so 2 2 2 2| | / (3 2 ) /8E h hc h ml  and 

2 31 10 2 8

34
8 8(9.109 10  kg)(7.0 10  m) (2.998 10  m/s)

5 5(6.626 10  J s)
ml c

h
 = 73.2 10  m  =  

   320 nm 
 
2.18 Outside the box, 0. Inside the box,  is given by (2.15) as 

1 1/2 1 1/2cos[ (2 ) ] sin[ (2 ) ].a mE x b mE x  Continuity requires that  = 0 at /2x l  
and at /2,x l  the left and right ends of the box. Using (2.14), we thus have 

 1 1/2 1 1/20 cos[ (2 ) /2] sin[ (2 ) /2]a mE l b mE l    [Eq. (1)]   
1 1/2 1 1/20 cos[ (2 ) /2] sin[ (2 ) /2]a mE l b mE l    [Eq. (2)]. 

Adding Eqs. (1) and (2) and dividing by 2, we get 1 1/20 cos[ (2 ) /2],a mE l  so  

         either  a = 0  or  1 1/2cos[ (2 ) /2] 0mE l    [Eq. (3)].  

 Subtracting Eq. (1) from (2) and dividing by 2, we get 1 1/20 sin[ (2 ) /2],b mE l  so  

                  either  b = 0  or  1 1/2sin[ (2 ) /2] 0mE l    [Eq. (4)]. 

    If a = 0, then b cannot be 0 (because this would make  = 0), so if a = 0, then 
1 1/2sin[ (2 ) /2] 0mE l   [Eq. (5)]  and 1 1/2sin[ (2 ) ].b mE x  To satisfy Eq. (5), we 

must have 1 1/2[ (2 ) /2] ,mE l k  where k is an integer. The wave functions and energies 
when a = 0 are  
         sin[2 / ]b k x l  and 2 2 2(2 ) /8E k h ml   , where k = 1, 2, 3,…. [Eq. (6)]  
(For reasons discussed in Chapter 2, k = 0 is not allowed and negative values of k do not 
give a different .)  
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     If b = 0, then a cannot be 0 (because this would make  = 0), so if b = 0, then 
1 1/2cos[ (2 ) / 2] 0mE l   [Eq. (7)]  and 1 1/2cos[ (2 ) ].a mE x  To satisfy Eq. (7), we 

must have 1 1/2[ (2 ) / 2] (2 1) /2,mE l j  where j is an integer. The wave functions and 
energies when b = 0 are  
         cos[(2 1) / ]a j x l  and 2 2 2(2 1) / 8E j h ml   , where j = 0, 1, 2, 3,… [Eq. (8)]  
(As discussed in Chapter 2, negative values of j do not give a different .)  

   In Eq. (8), 2j + 1 takes on the values 1, 3, 5,…; in Eq. (6), 2k takes on the values  
2, 4, 6,… . Therefore 2 2 2/8 ,E n h ml  where n = 1, 2, 3,…, as we found with the origin at 
the left end of the box. Also, the wave functions in Eqs. (6) and (8) are the same as with 
the origin at the left end, as can be verified by sketching a few of them. 
 

2.19 Using square brackets to denote the dimensions of a quantity and M, L, T to denote the 
dimensions mass, length, and time, we have [E] = ML2T–2 = [h]a[m]b[l]c = [E]aTaMbLc = 
(ML2T–2)aTaMbLc = Ma+bL2a+cT–a. In order to have the same dimensions on each side of 
the equation, the powers of M, L, and T must match. So 1 = a + b,   2 = 2a + c,   –2 = –a. 
We get a = 2,  b = 1 – a = –1, and c = 2 – 2a = –2. 

 

2.20 From Eqs. (1.20) and (2.30), 
1/2 1/2/ (2 ) / (2 ) /

1 2( )iEt i mE x i mE xe c e c e . 

 
2.21 (a)  Let 2 1/2 1/2

0(2 / ) ( )r m V E  and 2 1/2 1/2(2 / )s m E . Then I
rxCe  and 

II cos sin .A sx B sx  We have I
rxCre  and II sin cos .sA sx sB sx  The 

condition I II(0) (0)  gives Cr sB , so 1/2 1/2
0/ / ( ) /B Cr s Ar s A V E E , since  

C = A, as noted a few lines before Eq. (2.33). 
 (b)  III

rxGe  and III .rxrGe  From (a), II sin ( / ) cos .sA sx s Ar s sx  The 

relations II III( ) ( )l l  and II III( ) ( )l l  give sin cos rlsA sl rA sl rGe  and 

cos ( / )sin .rlA sl Ar s sl Ge   Dividing the first equation by the second, we get 

1
sin cos

cos sin
s sl r sl r

sl rs sl
  and  2 22 cos ( )sin .rs sl s r sl  Substitution for r and s gives 

2 2 1/2 1/2 2 1/2
0 02(2 / )( ) cos[(2 ) / ] (2 / )(2 )sin[(2 ) / ]m V E E mE l m E V mE l , which is 

(2.33). 
 
2.22 (a)  As 0 ,V  2E on the left side of (2.33) can be neglected compared with V0, and E2 

on the right side can be neglected to give 1/2 1/2
0 0tan[(2 ) / ] 2( ) /mE l V E V  

1/2
02( / ) .E V  The right side of this equation goes to 0 as 0 ,V  so 

1/2tan[(2 ) / ] 0.mE l  This equation is satisfied when 1/2(2 ) / ,mE l n  where n is an 
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integer. Solving for E, we get 2 2 28 .E n h ml  (Zero and negative values of n are 
excluded for the reasons discussed in Sec. 2.2.) 

 (b)  I and III are given by the equations preceding (2.32). In I, x is negative, and in III, 
x is positive. As 0 ,V  I and III go to 0. To have  be continuous,  in (2.32) must 
be zero at x = 0 and at x = l, and we get (2.23) as the wave function inside the box. 

 
2.23 V0 = (15.0 eV)(1.602 × 10–19 J/eV) = 2.40 × 10–18 J.   1/2

0(2 ) /b mV l   
[2(9.109 × 10–31 kg)(2.40 × 10–18 J)]1/22ˊ(2.00 × 10–10 m)/(6.626 × 10–34 J s) = 3.97 and 
b/  = 1.26. Then N – 1 < 1.26 Ò N, so N = 2. 

 
2.24 With b = 3.97, use of a spreadsheet to calculate the left side of (2.35) for increments of 

0.005 in  shows that it changes sign between the  values 0.265 and 0.270 and between 
0.900 and 0.905. Linear interpolation gives  ſ E/V0 = 0.268 and 0.903, and E = 
0.268(15.0 eV) = 4.02 eV and 13.5 eV. 

 
2.25            
 
 
 
 
2.26 (a)  The definition (2.34) shows that b > 0; hence b/  > 0. If the number N of bound states 

were 0, then we would have the impossible result that b/  Ò 0. Hence N cannot be 0 and 
there is always at least one bound state. 

 (b)  The Schrödinger equation is 2(2 / )( ) .m E V  Since V is discontinuous at  
x = 0, the Schrödinger equation shows that  must be discontinuous at x = 0. 

 
2.27 0/E V  (3.00 eV)/(20.0 eV) = 0.150. Equation (2.35) becomes 

0.700 tan(0.387 ) 0.714 0,b  so tan(0.387 ) 1.02.b  From the definition (2.34), b 
cannot be negative, so 0.387 0.795 2.35b  and b = 6.07. (Addition of integral 
multiples of ˊ to 2.35 gives 0.387b values that also satisfy Eq. (2.35), but these larger b 
values correspond to wells with larger l values and larger values of N, the number of 
bound levels; see Eq. (2.36). In these wider wells, the 3.00 eV level is not the lowest 
level.) Equation (2.34) gives 1/2

0(2 )l b mV  =  
34

31 19 1/2
6.07(6.626 10  J s)

2 [2(9.109 10  kg)(20.0 eV)(1.602 10  J/eV)]
 = 2.65 × 10–10 m = 0.265 nm. 
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2.28 Equation (2.36) gives 2  < 1/2
0(2 ) /mV l  Ò 3 , so 1/2

02 (2 )l mV  =  
(6.626 × 10–34 J s)/[2(9.109 × 10–31 kg)(2.00 × 10–18 J)]1/2 = 3.47 × 10–10 m = 3.47 Ȕ.  
Also, (3 /2 )l (3.47 Ȕ) = 5.20 Ȕ. 

2.29 (a)  From Eq. (2.36), an increase in V0 increases b/ , which increases the number N of 
bound states. 

 (b)  An increase in l increases b/ , which increases the number N of bound states. 
 
2.30 (a)  From I II(0) (0) , II III( ) ( )l l , and 0,E we get C = b  (Eq. 1)  and 

2 1/2 1/2
0(2 / )m V lal b Ge   (Eq. 2). The conditions I II(0) (0)  and II III( ) ( )l l  give 

2 1/2 1/2
0(2 / )C m V a   (Eq. 3)  and 

2 1/2 1/2
0(2 / )2 1/2 1/2

0(2 / ) m V la m V Ge   (Eq. 4). 

 (b)  If C > 0, then Eqs. 1 and 3 give b > 0 and a > 0. Equation 4 then gives G < 0 and Eq. 
2 gives G > 0, which is a contradiction. If C < 0, then Eqs. 1 and 3 give b < 0 and a < 0. 
Equation 4 then gives G > 0 and Eq. 2 gives G < 0, which is a contradiction. Hence C = 0. 

 (c)  With C = 0, Eqs. 1 and 3 give b = 0 and a = 0. Hence II 0. 

 
2.31 Although essentially no molecules have enough kinetic energy to overcome the 

electrostatic-repulsion barrier according to classical mechanics, quantum mechanics 
allows nuclei to tunnel through the barrier, and there is a significant probability for nuclei 
to come close enough to undergo fusion. 

 
2.32 (a)  F;   (b)  F;   (c)  T (Fig. 2.3 shows  is discontinuous at the ends of the box.);    

(d)  F;   (e)  T;   (f)  F (See Fig. 2.4.);   (g)  T;   (h)  F;   (i)  T. 
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Chapter 3 

Operators 
 
 

3.1 (a)  2 2ˆ ( / ) cos( 1) 2 sin( 1);g Af d dx x x x     
(b)  ˆ 5̂sin 5sin ;Af x x     
(c)  2ˆ sin ;Af x     
(d)  lnexp(ln ) ;xx e x     
(e)  2 2 2( / ) ln 3 ( / )3[1 (3 )] 1/ ;d dx x d dx x x     
(f)  2 2 3 3( / 3 / )(4 ) 24 36 ;d dx x d dx x x x  
(g)  2 2( / )[sin( )] 2 cos( ).y xy xy xy  

 
3.2 (a)  Operator;   (b)  function;   (c)  function;   (d)  operator;   (e)  operator;   (f)  function. 
 
3.3 2ˆ 3 2 ( / ).A x x d dx  

 
3.4 2 21̂, ( / ), ( / ).d dx d dx  

 
3.5 (a)  Some possibilities are (4/x)  and d/dx. 
 (b)  (x/2) , (1/4)(    )2. 
 (c)  (1/x2) ,  (4x)–1 d/dx,  (1/12) d2/dx2. 
 
3.6 To prove that two operators are equal, we must show that they give the same result when 

they operate on an arbitrary function. In this case, we must show that ˆ ˆ( )A B f  equals 
ˆˆ( ) .B A f  Using the definition (3.2) of addition of operators, we have 

ˆ ˆˆ ˆ( )A B f Af Bf  and ˆ ˆ ˆˆ ˆ ˆ( ) ,B A f Bf Af Af Bf  which completes the proof. 
 
3.7 We have ˆ ˆˆ( )A B f Cf  for all functions f,  so ˆ ˆˆAf Bf Cf  and ˆ ˆ ˆ .Af Cf Bf  Hence 

ˆ ˆ ˆ.A C B  
 
3.8 (a)  2 2 2 3 4 3( / ) ( / )5 20 ;d dx x x d dx x x  

 (b)  2 2 2 3 2 3( / ) (6 ) 6 ;x d dx x x x x  

 (c)  2 2 2 2 2( / )[ ( )] ( / )(2 ) 2 4 ;d dx x f x d dx xf x f f xf x f  

www.ShimiPedia.ir



 
Copyright © 2014 Pearson Education, Inc. 

 

3-2

 (d)  2 2 2 2( / ) .x d dx f x f  

 
3.9 3 3ˆ ˆ ( / )ABf x d dx f x f , so 3ˆ ˆ / .AB x d dx  Also 3 2 3ˆˆ ( / )( ) 3 ,BAf d dx x f x f x f  so 

2 3ˆˆ 3 /BA x x d dx   

 
3.10 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[( ) ] ( )( ) [ ( )],AB C f AB Cf A B Cf  where (3.3) was used twice; first with Â  and B̂  in 

(3.3) replaced by ˆ ˆAB  and Ĉ , respectively, and then with f in (3.3) replaced with the 
function ˆ .Cf  Also, ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ( )] [( ) ] [ ( )]A BC f A BC f A B Cf , which equals ˆ ˆˆ[( ) ]AB C f . 

 

3.11 (a)  2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ( )( ) ( ) ( )A B f A B A B f A B Af Bf A Af Bf B Af Bf    
(Eq. 1), where the definitions of the product and the sum of operators were used. If we 
interchange Â  and B̂  in this result, we get 2ˆˆ( )B A f ˆ ˆ ˆˆ ˆ ˆ( ) ( ).B Bf Af A Bf Af  Since 
ˆ ˆˆ ˆ ,Af Bf Bf Af  we see that 2 2ˆ ˆˆ ˆ( ) ( ) .A B f B A f   

 (b)  If Â  and B̂  are linear, Eq. 1 becomes 2ˆ ˆ( )A B f  = 2 2ˆ ˆ ˆˆ ˆ ˆA f ABf BAf B f . If 
ˆ ˆˆ ˆ ,AB BA  then 2 2 2ˆ ˆ ˆˆ ˆ ˆ( ) 2A B f A f ABf B f . 

 
3.12 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )A B f AB BA f ABf BAf  and ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )B A f BA AB f BAf ABf  

ˆ ˆ[ , ] .A B f  

 
3.13 (a)  [sin , / ] ( ) (sin )( / ) ( ) ( / )[(sin ) ( )]z d dz f z z d dz f z d dz z f z      

(sin ) (cos ) (sin )z f z f z f  (cos ) ,z f  so [sin , / ] cosz d dz z . 

 (b)  2 2 2 2 2 2 2 2 2[ / , ] ( / )[( ) ] ( )( / )d dx ax bx c f d dx ax bx c f ax bx c d dx f  
2 2( / )[(2 ) ( ) ] ( )d dx ax b f ax bx c f ax bx c f
2 22 2(2 ) ( ) ( ) 2 (4 2 )af ax b f ax bx c f ax bx c f af ax b f ,  

so 2 2 2[ / , ] 2 (4 2 )( / ).d dx ax bx c a ax b d dx  

 (c)  2 2 2 2 2 2[ / , / ] ( / )( / ) ( / )( / ) 0d dx d dx f d dx d dx f d dx d dx f f f f  so 
2 2[ / , / ] 0.d dx d dx  

 
3.14 (a)  Linear;   (b)  nonlinear;   (c)  linear;   (d)  nonlinear;   (e)  linear. 
 
3.15 ( ) ( ) ( 1) ( 1)

1 1 0[ ( ) / ( ) / ( ) / ( )] ( ) ( )n n n n
n nA x d dx A x d dx A x d dx A x y x g x  
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3.16 Given: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( ) , ( ) ( ).A f g Af Ag A cf cAf B f g Bf Bg B cf c Bf  
Prove: ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) , ( ) .AB f g ABf ABg AB cf cABf  
Use of the given equations gives ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )AB f g A Bf Bg A Bf A Bg  
ˆ ˆˆ ˆ ,ABf ABg  since B̂f  and B̂g  are functions; also, ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) .AB cf A cBf cA Bf cABf  

 
3.17 We have    

   

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) (defn. of sum of ops.  and )
ˆ ˆ ˆ ˆˆ( ) ( ) (linearity of )
ˆ ˆ ˆˆ (defn. of op. prod.)
ˆ ˆ ˆ ˆ ˆ ˆˆ( ) (defn. of sum of ops.  and )

A B C f A Bf Cf B C

A Bf A Cf A

ABf ACf

AB AC f AB AC

 

 Hence ˆ ˆ ˆ ˆ ˆˆ ˆ( ) .A B C AB AC  

 

3.18 (a)  Using first (3.9) and then (3.10), we have ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) .A bf cg A bf A cg bAf cAg  

 (b)  Setting b = 1 and c = 1 in (3.94), we get (3.9). Setting c = 0 in (3.94), we get (3.10). 
 
3.19 (a)  Complex conjugation, since ( )* * *f g f g  but ( )* * * *.cf c f cf  

(b)  ( )–1(d/dx)( )–1, since ( )–1(d/dx)( )–1cf = ( )–1(d/dx)c–1f – 1 =  
( )–1 1 2[ ( ) ]c f f  = 2 /cf f  and c( )–1(d/dx)( )–1f = c( )–1(d/dx)f – 1 = 

1 2( ) ( )c f f  = 2 /cf f , but  
( )–1(d/dx)( )–1(f  + g) = ( )–1(d/dx)( f  + g)–1 = –( )–1[( f  + g)–2 ( )f g ] =  
–( f  + g)2 1( )f g  ≠ ( )–1(d/dx)( )–1f + ( )–1(d/dx)( )–1g = 2 2/ /f f g g . 

 
3.20 (a)  This is always true since it is the definition of the sum of operators.  

(b)  Only true if Â  is linear. 
(c)  Not generally true; for example, it is false for differentiation and integration. It is true 
if Â  is multiplication by a function. 
(d)  Not generally true. Only true if the operators commute. 
(e)  Not generally true. 
(f)  Not generally true. 
(g)  True, since .fg gf  
(h)  True, since B̂g  is a function.  

 
3.21 (a)  ˆ ˆ ˆ[ ( ) ( )] ( ) ( ) ( ) ( ).h h hT f x g x f x h g x h T f x T g x   

Also, ˆ ˆ[ ( )] ( ) ( ).h hT cf x cf x h cT f x  So ĥT  is linear. 
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 (b)  2 2 2 2
1 1 1
ˆ ˆ ˆ( 3 2) ( 2) 3( 1) 2 2 1.T T T x x x x x  

 

3.22 ˆ 2 3ˆ ˆ( ) (1 /2! /3! ) ( ) ( ) ( ) ( )/2! ( )/3! .De f x D D D f x f x f x f x f x  

1̂ ( ) ( 1).T f x f x  The Taylor series (4.85) in Prob. 4.1 with x changed to z gives 
2( ) ( ) ( )( ) / 1! ( )( ) /2! .f z f a f a z a f a z a  Letting ,h z a  the Taylor series 

becomes 2( ) ( ) ( ) / 1! ( ) /2! .f a h f a f a h f a h  Changing a to x and letting 

1,h  we get ( 1) ( ) ( ) / 1! ( )/2! ,f x f x f x f x  which shows that ˆ
1̂ .De f T f  

 

3.23 (a)  2 2( / ) x xd dx e e  and the eigenvalue is 1. 

 (b)  2 2 2( / ) 2d dx x  and 2x  is not an eigenfunction of 2 2/d dx . 

 (c)  2 2( / ) sin ( / ) cos sind dx x d dx x x  and the eigenvalue is –1. 

 (d)  2 2( / )3cos 3cosd dx x x  and the eigenvalue is –1. 

 (e)  2 2( / )(sin cos ) (sin cos )d dx x x x x  so the eigenvalue is –1. 

 

3.24 (a)  2 2 2 2 2 3 2 3 2 3 2 3( / / )( ) 4 9 13 .x y x y x y x yx y e e e e e e e e  The eigenvalue is 13. 
(b)  2 2 2 2 3 3 3 3( / / )( ) 6 6 .x y x y xy x y  Not an eigenfunction. 
(c)  

2 2 2 2( / / )(sin 2 cos 4 ) 4sin 2 cos 4 16sin 2 cos 4 20sin 2 cos 4 .x y x y x y x y x y  
The eigenvalue is 20.  
(d)  2 2 2 2( / / )(sin 2 cos3 ) 4sin 2 9cos3 .x y x y x y  Not an eigenfunction, 

 

3.25 2 2 2( /2 )( / ) ( ) ( )m d dx g x kg x  and 2( ) (2 / ) ( ) 0.g x m kg x  This is a linear 
homogenous differential equation with constant coefficients. The auxiliary equation is 

2 2(2 / ) 0s m k  and 1/2(2 ) / .s i mk  The general solution is 
1/2 1/2(2 ) / (2 ) /

1 2 .i mk x i mk xg c e c e  If the eigenvalue k were a negative number, then 1/2k  

would be a pure imaginary number; that is, 1/2 ,k ib  where b is real and positive. This 
would make 1/2ik  a real negative number and the first exponential in g would go to  as 
x  and the second exponential would go to  as .x  Likewise, if k were an 
imaginary number ( ,ik a bi re  where a and b are real and b is nonzero), then 1/2k  
would have the form ,c id  and 1/2ik  would have the form ,d ic  where c and d are 
real. This would make the exponentials go to infinity as x goes to plus or minus infinity. 
Hence to keep g finite as ,x  the eigenvalue k must be real and nonnegative, and the 
allowed eigenvalues are all nonnegative numbers. 
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3.26 ( ) .dx f f dx kf  Differentiation of both sides of this equation gives 
( / ) .d dx f dx f kf  So 1/df dx k f  and 1(1/ ) .f df k dx  Integration gives 

1ln f k x c  and / / ,c x k x kf e e Ae  where A is a constant and k is the eigenvalue. To 
prevent the eigenfunctions from becoming infinite as ,x  k must be a pure 
imaginary number. (Strictly speaking, /x kAe  is an eigenfunction of dx  only if we omit 
the arbitrary constant of integration.) 

 
3.27 2 2/ 2 /d f dx df dx kf  and 2 0.f f kf  The auxiliary equation is 2 2 0s s k  

and 1/21 (1 ) .s k  So 
1/2 1/2[ 1 (1 ) ] [ 1 (1 ) ] ,k x k xf Ae Be  where A and B are arbitrary 

constants. To prevent the eigenfunctions from becoming infinite as ,x  the factors 
multiplying x must be pure imaginary numbers: 1/21 (1 ) ,k ci  where c is an arbitrary 
real number. So 1/2(1 ) 1k ci  and 21 (1 )k ci 21 2ic c  and 22 .k ic c  

 

3.28 (a)  3 3 3 3 3 3ˆ ( / ) ( / ) /yp i y i y ;    

 (b)  ˆ ˆ ˆ ˆ ( / ) / ( / ) / ;y xxp yp x i y y i x  

 (c)  2 2[ ( / ) / ] ( , ) ( / )( / )x i y f x y x y x f y 2 2 2 2( / ).x f y   
Hence 2 2 2 2 2ˆˆ( ) ( / ).yxp x y  

 
3.29 ( / )( / )i dg dx kg  and / ( / ) .dg g ik dx  Integration gives ln ( / )g ik x C  and 

/ / ,ikx C ikxg e e Ae  where C and A are constants. If k were imaginary ( ,k a bi  
where a and b are real and b is nonzero), then ,ik ia b  and the /bxe  factor in g makes 
g go to infinity as x goes to minus infinity if b is positive or as x goes to infinity if b is 
negative. Hence b must be zero and ,k a  where a is a real number. 

 
3.30 (a)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )( )]xx p f i x x x x f i x f x x xf  

( / )[ / / ] ( / ) ,i x f x f x f x i f  so ˆ ˆ[ , ] ( / ).xx p i  

 (b)  2 2 2 2 2 2 2 2 2 2 2ˆ ˆ[ , ] ( / ) [ / ( / ) ] [ / ( / )( )]xx p f i x x x x f x f x x xf  
2 2 2 2 2 2[ / / 2 / ] 2 / .x f x x f x f x f x  Hence 2 2ˆ ˆ[ , ] 2 / .xx p x  

 (c)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )] 0yx p f i x y y x f i x f y x f y , so ˆ ˆ[ , ] 0yx p . 

 (d)  ˆˆ[ , ( , , )] ( ) 0.x V x y z f xV Vx f  

 (e)  Let 2 /2 .A m  Then ˆˆ[ , ]x H f  
2 2 2 2 2 2 2 2 2 2 2 2[ ( / / / ) ] [ ( / / / ) ]x A x y z V A x y z V x f  
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2 2 2 2 2 2 2 2 2 2 2 2[ / / / / 2 / / / ]A x f x x f y x f z x f x f x x f y x f z  
22 / ( / ) / ,xAVf AVxf A f x m f x  so 2ˆˆ[ , ] ( / ) / .x H m x  

 (f)  2ˆˆ ˆˆ[ , ]xxyz p f  
2 2 2 2 2 2 2 2 2 2[ / ( / )( )] [ / / 2 / ]xyz f x x xyzf xyz f x xyz f x yz f x  
22 / ,yz f x  so 2 2ˆˆ ˆˆ[ , ] 2 / .xxyz p yz x  

 

3.31 
2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 21 1 1 2 2 2

ˆ
2 2

T
m mx y z x y z

 

 

3.32  2 2 2 2 2ˆ ( /2 ) ( ),H m c x y z  where 2 2 2 2 2 2 2/ / / .x y z  

 

3.33 (a)  
2 2
0 | ( , ) |x t dx ; 

 (b)  2 2
0 | ( , , , ) |x y z t dx dy dz ; 

 (c)  2 2
0 1 1 1 2 2 2 1 1 1 2 2 2| ( , , , ,  ,  ,  )|x y z x y z t dx dy dz dx dy dz . 

 
3.34 (a)  2| | dx  is a probability and probabilities have no units. Since dx has SI units of m, 

the SI units of  are m–1/2. 

 (b)  To make 2| | dx dy dz  dimensionless, the SI units of  are m–3/2. 

 (c)  To make 2
1 1 1| | n n ndx dy dz dx dy dz  dimensionless, the SI units of  are m–3n/2. 

 
3.35 Let the x, y, and z directions correspond to the order used in the problem to state the edge 

lengths. The ground state has x y zn n n  quantum numbers of 111.  The first excited state 

has one quantum number equal to 2. The quantum-mechanical energy decreases as the 
length of a side of the box increases. Hence in the first excited state, the quantum-number 
value 2 is for the direction of the longest edge, the z direction. Then 

2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 1 2 1 1 1

8 8
h hh
m ma b c a b c

 

34
14 1

2 31 10 2
3 3(6.626 10  J s) 7.58 10  s

8 8(9.109 10  kg)(6.00 10  m)
h

mc
 

 

3.36 (a)  Use of Eqs. (3.74) and (A.2) gives 3.00 nm 2.00 nm 0.40 nm 2
2.00 nm 1.50 nm 0 | | dx dy dz  

0.40 nm 2
0 (2/ )sin ( / )a x a dx 2.00 nm 2

1.50 nm (2/ )sin ( / )b y b dy 3.00 nm 2
2.00 nm (2/ )sin ( / )c z c dz =  
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0.40 nm 2.00 nm 3.00 nm

0 1.50 nm 2.00 nm

sin(2 / ) sin(2 / ) sin(2 / )
2 2 2

x x a y y b z z c
a b c

 = 

0.40 sin(2 0.40/1.00) 2.00 1.50 sin(2 2.00/2.00) sin(2 1.50/2.00)
1.00 2 2.00 2
3.00 2.00 sin(2 3.00/5.00) sin(2 2.00/5.00)

5.00 2
 =  

(0.3065)(0.09085)(0.3871) = 0.0108. 
(b) The y and z ranges of the region include the full range of y and z, and the y and z 
factors in ψ are normalized. Hence the y and z integrals each equal 1. The x integral is the 
same as in part (a), so the probability is 0.3065. 
(c) The same as (b), namely, 0.3065. 

 
3.37 ˆ / .xp i x   (a)  (sin )/ cos ,kx x k kx  so ψ is not an eigenfunction of ˆ .xp  

 (b)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )x xp x n a , where (3.73)  is given by  

Eq. (3.73). The eigenvalue is 2 2 2/4 ,xh n a  which is the value observed if 2
xp  is measured. 

 (c)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )z zp z n c  and the observed value is 

2 2 2/4 .zh n c  

 (d)  (3.73) (3.73) (3.73)ˆ (const.)x x , so ψ is not an eigenfunction of ˆ.x  

 
3.38 Since 2,yn  the plane /2y b  is a nodal plane within the box; this plane is parallel to 

the xz plane and bisects the box. With 3,zn  the function sin(3 / )z c  is zero on the nodal 
planes /3z c  and 2 /3;z c  these planes are parallel to the xy plane.  

 
3.39 (a)  2| |  is a maximum where | |  is a maximum. We have ( ) ( ) ( ) .f x g y h z  For 

1,xn  1/2( ) (2/ ) sin( / )f x a x a  is a maximum at /2.x a  Also, ( )g y  is a maximum 

at /2y b  and ( )h z  is a maximum at /2.z c  Therefore  is a maximum at the point 
( /2, /2, /2),a b c  which is the center of the box. 

 (b)  1/2( ) (2/ ) sin(2 / )f x a x a  is a maximum at /4x a  and at 3 /4.x a  ( )g y  is a 

maximum at /2y b  and ( )h z  is a maximum at /2.z c  Therefore  is a maximum at 
the points ( /4, /2, /2)a b c  and (3 /4, /2, /2),a b c  

 
3.40 When integrating over one variable, we treat the other two variables as constant; hence   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F x G y H z dx dy dz F x G y H z dx dy dz G y H z F x dx dy dz
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( ) ( ) ( ) ( ) ( ) ( )F x dx G y H z dy dz F x dx H z G y dy dz

( ) ( ) ( )F x dx G y dy H z dz . 

3.41 If the ratio of two edge lengths is exactly an integer, we have degeneracy. For example, if 
b = ka, where k is an integer, then 2 2 2 2 2 2 2 2/ / ( / )/x y x yn a n b n n k a . The ( , , )x y zn n n  
states (1, 2 , )zk n  and (2, , )zk n  have the same energy. 

 

3.42 With V = 0, we have 
2 2 2 2

2 2 22
E

m x y z
. Assume 

( , , ) ( ) ( ) ( ).x y z F x G y H z  Substitution into the Schrödinger equation followed by 

division by FGH, gives 
2 2 2 2

2 2 2
1 1 1

2
d F d G d H E

m F G Hdx dy dz
 and 

2 2 2 2 2

2 2 2
1 1 1

2 2
d F d G d HE

m F m G Hdx dy dz
   (Eq. 1).   Let 

2 2

2
1 .

2x
d FE

m F dx
 

Then, since F is a function of x only, xE  is independent of y and z. But Eq. 1 shows xE  is 
equal to the right side of Eq. 1, which is independent of x, so xE  is independent of x. 

Hence xE  is a constant and 2 2 2( /2 )( / ) .xm d F dx E F  This is the same as the one-
dimensional free-particle Schrödinger equation (2.29), so F(x) and xE  are given by (2.30) 
and (2.31). By symmetry, G and H are given by (2.30) with x replaced by y and by z, 
respectively. 

 
3.43 For a linear combination of eigenfunctions of Ĥ  to be an eigenfunction of Ĥ , the 

eigenfunctions must have the same eigenvalue. In this case, they must have the same 
value of 2 2 2.x y zn n n  The functions (a) and (c) are eigenfunctions of Ĥ  and (b) is not. 

 

3.44 In addition to the 11 states shown in the table after Eq. (3.75), the following 6 states have 
2 2(8 / ) 15 :E ma h  

x y zn n n  123 132 213 231 312 321 
2 2(8 / )E ma h  14 14 14 14 14 14 

 These 6 states and the 11 listed in the textbook give a total of 17 states. These 17 states 
have 6 different values of 2 2(8 / )E ma h , and there are 6 energy levels. 

 
3.45 (a)  From the table after Eq. (3.75), there is only one state with this value, so the degree of 

degeneracy is 1, meaning this level is nondegenerate. 
 (b)  From the table in the Prob. 3.44 solution, the degree of degeneracy is 6. 
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 (c)  The following x y zn n n  values have 2 2(8 / )E ma h  = 27;  115, 151, 511, 333. The degree 

of degeneracy is 4. 
3.46 (a)  These are linearly independent since none of them can be written as a linear 

combination of the others. 

(b)  Since 2 2 1
83 1 3( ) (8),x x  these are not linearly independent. 

(c)  Linearly independent. 
(d)  Linearly independent. 
(e)  Since cos sin ,ixe x i x  these are linearly dependent. 

(f)  Since 2 21 sin cos ,x x  these are linearly dependent. 

(g)  Linearly independent. 
 
3.47 See the beginning of Sec. 3.6 for the proof. 
 

3.48 (a)  2 2 2
0 0 0 | ( ) | | ( ) | | ( ) |c b ax x f x g y h z dx dy dz  
2 2 2

0 0 0| ( ) | | ( ) | | ( ) | ,ca bx f x dx g y dy h z dz where f, g, and h are given preceding Eq. 

(3.72). Since g and h are normalized, 2 2
0 0| ( ) | (2/ ) sin ( / )aa

xx x f x dx a x n x a dx  = 

2 2

2 2
0

2 sin(2 / ) cos(2 / )
4 4 28

a

x x
x x

x ax a an x a n x a
a n n

, where Eq. (A.3) was used. 

 (b)  By symmetry, /2y b  and /2.z c  

 (c)  The derivation of Eq. (3.92) for the ground state applies to any state, and 0.xp  

 (d)  Since g and h are normalized, 
2 2 2 2 2

0 0| ( ) | (2/ ) sin ( / )aa
xx x f x dx a x n x a dx

3 2 3 2

3 3 2 2
0

2 sin(2 / ) cos(2 / )
6 4 8 4

a

x x
x x x

x ax a a xn x a n x a
a n n n

2 2

2 23 2 x

a a
n

,  

where Eq. (A.4) was used. We have 2 2 2/4 .x a x  Also, 
2 2 2

0 0 0 | ( ) | | ( ) | | ( ) |c b axy xy f x g y h z dx dy dz =
2 2 2

0 0 0| ( ) | | ( ) | | ( ) |ca bx f x dx y g y dy h z dz  = .x y  

 

3.49 ˆ ˆ ˆˆ ˆ ˆ*( ) *( ) * *A B A B d A B d A d B d  

.A B   Also ˆ ˆ*( ) * .cB cB d c B d c B  
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3.50 (a)  Not acceptable, since it is not quadratically integrable. This is obvious from a graph or 
from 2 2(1/2 ) | .ax axe dx a e  

 (b)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.9). 

 (c)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.10) with n = 1. 

 (d)  Acceptable for the same reasons as in (b). 
 (e)  Not acceptable since it is not continuous at x = 0. 
 

3.51 Given: 1 1
ˆ/i t H  and 2 2

ˆ/i t H . Prove that 

1 1 2 2 1 1 2 2
ˆ( ) / ( )i c c t H c c . We have 1 1 2 2( ) /i c c t  

1 1 2 2[ ( ) / ( ) / ]i c t c t 1 1 2 2/ /c i t c i t 1 1 2 2
ˆ ˆc H c H

1 1 2 2
ˆ ( )H c c , since Ĥ  is linear.  

 
3.52 (a)  An inefficient C++ program is 
 
  #include <iostream> 
  using namespace std; 
  int main() { 
   int  m, i, j, k, nx, ny, nz, L[400], N[400], R[400], S[400]; 
   i=0; 
   for (nx=1; nx<8; nx=nx+1) { 
    for (ny=1; ny<8; ny=ny+1) { 
     for (nz=1; nz<8; nz=nz+1) { 
      m=nx*nx+ny*ny+nz*nz; 
      if (m>60) 
       continue; 
      i=i+1; 
      L[i]=m; 
      N[i]=nx; 
      R[i]=ny; 
      S[i]=nz; 
     } 
    } 
   } 
   for (k=3; k<61; k=k+1) { 
    for (j=1; j<=i; j=j+1) { 
     if (L[j]==k) 
      cout<<N[j]<< " "<<R[j]<< " "<<S[j]<< " "<<L[j]<<endl; 
    } 
   } 
   return 0;  
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  } 
 
   A free integrated development environment (IDE) to debug and run C++ programs is  
  Code::Blocks, available at www.codeblocks.org. For a Windows computer, downloading  
  the file with mingw-setup.exe as part of the name will include the MinGW (GCC) compiler  
  for C++. Free user guides and manuals for Code::Blocks can be found by searching the  
  Internet.  
   Alternatively, you can run the program at ideone.com. 
 (b)  One finds 12 states. 
 
3.53 (a)  T.   (b)  F.  See the paragraph preceding the example at the end of Sec. 3.3. 
 (c)  F. This is only true if f1 and f2 have the same eigenvalue. 
 (d)  F.   (e)  F. This is only true if the two solutions have the same energy eigenvalue. 
 (f)  F. This is only true for stationary states. 
 (g)  F.   (h)  F.  (5 ) (const.)(5 ).x x x  

 (i)  T.  / / /ˆ ˆ ˆ( ) .iEt iEt iEtH H e e H Ee E  

 (j)  T.   (k)  T.   (l)  F. 

 (m)  T.  2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ,A f A Af A af aAf a f  provided Â  is linear. Note that the 
definition of eigenfunction and eigenvalue in Sec. 3.2 specified that Â  is linear. 

 (n)  F.   (o)  F. 
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      Chapter 4   

The Harmonic Oscillator 
 
 

4.1 Taking ( / )md dx  of (4.84) gives ( )
0( ) ( 1)( 2) ( 1)( )m n m

nnf x c n n n n m x a . 
The factors n, ( 1),...n  make the terms with 0,n  1,n …, 1n m  vanish, so 

( ) ( ) ( 1)( 2) ( 1)( )m n m
nn mf x c n n n n m x a   (Eq. 1). (If this is too abstract 

for you, write the expansion as 2
0 1 2( ) k

kf x c c x c x c x  and do the 

differentiation.) With x a  in Eq. 1, the ( )n mx a  factor makes all terms equal to zero 
except the term with ,n m  which is a constant. Equation (1) with x a  gives 

( ) ( ) ( 1)( 2) ( 1) !m
m mf a c m m m m m c m  and ( ) ( )/ !m

mc f a m .  

 
4.2 (a)  (iv)( ) sin , ( ) cos , ( ) sin , ( ) cos , ( ) sin ,f x x f x x f x x f x x f x x …;  

a = 0 and (iv)(0) sin 0 0, (0) cos0 1, (0) 0, (0) 1, (0) 0,f f f f f …. The 

Taylor series is 3 5sin 0 / 1! 0 / 3! 0 / 5!x x x x 2 1
0 ( 1) / (2 1)!k k

k x k . 

(b)  2 4 2 4 2
0cos 1 / 1! 3 / 3! 5 / 5! 1 / 2! / 4! ( 1) / (2 )!k k

kx x x x x x k . 

 
4.3 (a)  We use (4.85) with 0.a  We have ( ) xf x e  and ( ) ( ) .n xf x e   ( ) 0(0) 1.nf e  

So 2 3
01 / 1! / 2! / 3! / !x n

ne x x x x n . 

 (b)  2 3 4 51 ( ) / 1! ( ) / 2! ( ) / 3! ( ) / 4! ( ) / 5!ie i i i i i  
2 4 3 51 / 2! / 4! ( / 1! / 3! / 5! )i  cos sin .i  

 
4.4 From (4.22) and (4.28), / 2 cos(2 )dx dt A t b  and 2 2 2 22 cos (2 ).T m A t b  

From (4.22) and (4.27), 2 2 2 22 sin (2 ).V mA t b  Then 2 2 22 ,T V mA  since 
2 2sin cos 1.  

 

4.5 (a)  Let 0
n

nny c x . Then 1
0

n
nny nc x  and 2

0 ( 1) n
nny n n c x . Since 

the first two terms in the y  sum are zero, we have 2
2 ( 1) .n

nny n n c x  Let 

2.j n  Then 2 20 0( 2)( 1) ( 2)( 1)j n
j nj ny j j c x n n c x . Substitution 

in the differential equation gives 
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20 0 0 0( 2)( 1) ( 1) 2 3 0n n n n
n n n nn n n nn n c x n n c x nc x c x .  

We have 2
20[( 2)( 1) (3 ) ] 0.n

n nn n n c n n c x  Setting the coefficient of nx  

equal to zero, we have 2
2 ( 3) / [( 2)( 1)].n nc n n c n n  

 (b)  The recursion relation of (a) with 0n  gives 2 03 /2c c  and with 2n  gives 

4 2 2 0 03 / 12 /4 ( 3 / 2)/4 3 /8.c c c c c  With 1n  and 3n  in the recursion 
relation, we get 3 1/6c c  and 5 3 1 19 /20 9( /6)/20 3 /40.c c c c  

 
4.6 (a)  Odd;   (b)  even;  (c)  odd;   (d)  neither;  (e)  even;  (f)  odd;   (g)  neither;   (h)  even. 
 
4.7 Given:  ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ).f x f x g x g x h x h x k x k x  

Let ( ) ( ) ( ).p x f x g x   We have ( ) ( ) ( ) ( ) ( ) ( ),p x f x g x f x g x p x  so the product 
of two even functions is an even function.  Let ( ) ( ) ( ).q x h x k x  Then 

( ) ( ) ( ) ( )[ ( )] ( ) ( ) ( ),q x h x k x h x k x h x k x q x  so the product of two odd 
functions is an even function. Let ( ) ( ) ( ).r x f x h x  Then 

( ) ( ) ( ) ( )[ ( )] ( ) ( ) ( )r x f x h x f x h x f x h x r x . 

 
4.8 (a)  Given: ( ) ( ).f x f x  Differentiation of this equation gives 

( ) ( )/ ( )[ ( )/ ] ( ),f x df x dx f x d x dx f x  so f  is an odd function.  
 (b)  Differentiation of ( ) ( )f x f x  gives ( ) ( 1) ( ) ( ).f x f x f x  
 (c)  Differentiation of ( ) ( )f x f x  gives ( ) ( ),f x f x  as in (a). Putting 0x  in 

this equation, we get (0) (0),f f  so 2 (0) 0f  and (0) 0f . 

 

4.9 
2 22 1/2 /2 2 2 /2ˆ* ( /2 ) ( / ) ( / )x xT T d m e d dx e dx  = 

2 22 1/2 /2 2 2 /2( /2 )( / ) ( )x xm e x e dx  = 
22 1/2 2 2

0( /2 )( / ) 2 ( ) xm x e dx
2 1/2 2 1/2 3/2 1/2( / )( / ) [ (1/4)( / ) (1/2)( / ) ]m 2 /4m

2 (2 / )/4 /4,m m h  where (A.9) and (A.10) were used. 
2 21/2 /2 2 2 2 /2ˆ* ( / ) (2 )x axV V d e mx e dx  

21/2 2 2 2
0( / ) 2 (2 ) axmx e dx 3/2 1/2 2 1/2 3/2 2 24 (1/4)( / ) /m m

2 2 1/(2 ) /4 .m m h T  

 

4.10 From (4.54), 
2 22 2 2 2 2 1/2 3/21

1 1 0 1 41 | | 2 | | 2 | | /x xc x e dx c x e dx c , where 

(4.49) and (A.10) with n = 1 were used. We get 1/2 3/4 1/4
1| | 2c . From (4.56), 
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2 22 2 2 4 2 2 2 4
0 0 01 | | (1 4 4 ) 2| | (1 4 4 )x xc x x e dx c x x e dx  

2 1 1/2 1/2 3/2 2 1/2 5/2
02 | | [2 ( / ) 4 (1/4) / 4 (3 / 8) / ]c 2 1/2

02 | | ( / )c  

where (A.9) and (A.10) were used. Hence 1/2 1/4
0| | 2 ( / ) .c  

 

4.11 From (4.47), 
23 /2

3 1 3( ) .axc x c x e  From (4.46), 3 1 1[2 (1 3)/6] 2 /3.c c c  So 
23 /2

3 1[ (2/3) ] xc x x e . We have 
22 2 4 2 6

1 01 | | 2 [ (4/3) (4/9) ] xc x x x e dx  
2 2 1/2 3/2 3 1/2 5/2 2 4 1/2 7/2

12 | | [(1/2 ) / (4/3) (3/2 ) / (4/9) (15/2 ) / ]c  
2 1/2 3/2

1| | / 3c  and 1/2 3/4 1/4
1| | 3 .c  Then 

21/2 3/4 1/4 3 /2
3 3 [ (2/3) ] .xx x e  

 

4.12 From (4.47), 
2 2 4

4 0 2 4( ).xe c c x c x  From (4.46) with 4,v  

2 0 02 ( 4) /2 4c c c  and 

4 2 22 (2 4) /(3 4) /3c c c 0( 4 )/3c 2
04 /3.c  Then 

2 2 2 4
4 0 (1 4 4 /3).xc e x x  

 
4.13 At the maxima in the probability density 2| | , we have 2| | / 0.x  From (4.54), 

2 22 2 2 3
1 10 ( / )( ) (2 2 ) ,x xc x x e c x x e  so 3 20 (1 ).x x x x  The solutions 

are 0x  and 1/2.x  From Fig. 4.4b, 0x  is a minimum in probability density, so 
the maxima are at 1/2.x  

 
4.14 The wave function is an odd function with five nodes, one of which is at the origin. 

 
 Alternatively, one could take 1 times the  function graphed above.  
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4.15 2ˆ* | | .x x d x dxv  The wave function v  is either even or odd, so 2| |v  

is an even function. Hence 2| |x v  is an odd function and 2| | 0.x dxv  The result 

0x  is obvious from the graphs of 2| |  that correspond to Fig. 4.4. 

 
4.16 (a)  T.   (b)  T.   (c)  F (since   can be multiplied by –1 and remain a valid wave 

function).  (d)  T.   (e)  T.  
 
4.17 Similarities: The number of nodes between the boundary points is zero for the ground 

state and increases by one for each increase in the quantum number. The quantum 
numbers are integers. There is a zero-point energy. The shapes of corresponding wave 
functions are similar. If the origin is placed at the center of the box, the wave functions 
alternate between being even or odd as the quantum number increases. The energy levels 
are nondegenerate. There are an infinite number of bound-state energy levels 
Differences: The energy levels are equally spaced for the harmonic oscillator (ho) but 
unequally spaced for the particle in a box (pib). For the ho, there is some probability for 
the particle to be found in the classically forbidden region, but this probability is zero for 
the pib. 

 
4.18 (a)  1 1(2 ) [sin ( / ) ]t x A b  and 1 1 2 1/2/ (2 ) [1 ( / ) ]dt dx A x A , so 

1 2 1/2(2 ) [1 ( / ) ] .dt A x A dx  The period is 1/ , so the probability that the particle is 
found between x and x dx  is 1 2 1/22 ( ) [1 ( / ) ] .dt A x A dx  

 (b)  At ,x A  the classical probability density is infinite. 
 (c)   

  x/A 
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 For high values of the quantum number v , the outer peaks in 2  are much higher than 
the inner peaks, and the highest probability density is near the classical turning points of 
the motion, as is true for the classical probability density graphed above. This is in accord 
with the correspondence principle. 

 
4.19 For 0,x  the Hamiltonian operator is the same as that of the harmonic oscillator. Hence 

the solutions of the Schrödinger equation for 0x  are the functions (4.42), where the 
coefficients obey the recursion relation (4.39). To make  quadratically integrable,  
must go to zero as .x  This boundary condition then restricts the solutions to the 
harmonic-oscillator functions (4.47). Since V is infinite for 0x ,  must be zero for 

0x  (as for the particle in a box). The condition that  be continuous then requires that 
0  at 0x . The even harmonic-oscillator functions in (4.47) are not zero at the 

origin, so these are eliminated. Hence the well-behaved solutions are the harmonic 
oscillator wave functions with 1, 3, 5,...,v  and 1

2( )E hv  with 1, 3, 5,....v  If 

we define ( 1)/2n v , then 3
2(2 )E n h , with 0, 1, 2,....n  

 
4.20 (a)  The time-independent Schrödinger equation (3.47) is  

2 2 2 2 2 2 2 2 2 21 1 1
2 2 2( /2 )( / / / ) ( ) .x y zm x y z k x k y k z E   

The Hamiltonian operator is the sum of terms that each involve only one coordinate, so 
we try a separation of variables, taking ( ) ( ) ( ).f x g y h z  Substitution of this  into the 
Schrödinger equation followed by division by fgh gives  

2 2 2 2
2 2 21 1 1

2 2 22 2 2 ( )
2 x y z

d f d g d hgh f h fg k x k y k z fgh Efgh
m dx dy dz

 

2 2 2 2
2 2 21 1 1

2 2 22 2 2
1 1 1

2 x y z
d f d g d h k x k y k z E

m f g hdx dy dz
     (Eq. 1)  

2 2 2 2 2
2 2 21 1 1

2 2 22 2 2
1 1 1

2 2x x y z
d f d g d hE k x E k y k z

m f m g hdx dy dz
    (Eq. 2)  

Since f is a function of x only, the defined quantity xE  is independent of y and z. Since 

xE  equals the right side of the last equation and x does not appear on this side, xE  is 
independent of x. Therefore xE  is a constant. Multiplication of the xE  definition by f 

gives 2 2 2 21
2( /2 )( / ) x xm d f dx k x f E f , which is the same as the one-dimensional 

harmonic-oscillator (ho) Schrödinger equation (4.32) [see also (4.26)] with  replaced 
by f, k replaced by ,xk  and E replaced by xE . Hence f (x) is the one-dimensional ho wave 
function (4.47) with v  replaced by xv , and xE  is given by (4.45) and (4.23) as 

1/21
2( ) , (1/2 )( / ) .x x x x xE h k mv  Since x, y, and z occur symmetrically, g(y) and 

h(z) are ho functions with y and z as the variable. Equations 1 and 2 give, 
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1 1 1
2 2 2( ) ( ) ( ) ,x y z x x y y z zE E E E h h hv v v  where 

0, 1, 2, , 0, 1, 2, 0, 1, 2,x y zv v v  

 (b)  When the k’s are equal, we have x y z  and 3
2( ) .x y zE hv v v  The 

lowest energy level is 000 and is nondegenerate, where the numbers give the values of 
the quantum numbers , , .x y zv v v  The next-lowest level is threefold degenerate, 

consisting of the states 100, 010, and 001. The next level is sixfold degenerate and has 
the states 200, 020, 200, 110, 101, 011. The next level is tenfold degenerate and has the 
states 300, 030, 003, 111, 210, 201, 012, 021, 102, 120. 

 

4.21 (a)  
2 20

0 ( 1) 1.z zH e e   
2 2 2 2

1 ( 1) ( / ) ( 2 ) 2 .z z z zH e d dz e e ze z   
2 2 22 2

2 ( 2 4 ) 4 2,z z zH e e z e z   
2 2 2 23 3

3 (4 8 8 ) 8 12 .z z z zH e ze ze z e z z  

 (b)  For n = 0,  0zH z  and 1
12 .H z    

For n = 1,  2
1 2zH z  and 2 21

0 22 1 2 1 2 .H H z z  

For n = 2,  3
2 4 2zH z z  and 3 31

1 322 4 4 6 4 2 .H H z z z z z  

 (c)  For 0,v  (4.86) is 
21/4 /2

0 ( / ) ,xe  as in (4.53). For 1,v  (4.86) is 
2 21/2 1/4 /2 1/2 1/2 3/4 1/4 /2

1 (2 1!) ( / ) (2 ) 2x xe x xe , as in (4.55).  Finally, 
2 22 1/2 1/4 /2 1/2 2 1/2 1/4 2 /2

2 (2 2!) ( / ) [4( ) 2] 2 ( / ) (2 1)x xe x x e  as in 
(4.57). 

 
4.22 For very large | |,x  the first term in parentheses in (4.32) can be neglected compared with 

the second term, and (4.32) becomes 2 2 0.x  With 
2 /2xe , we have 

2 2 2 22 2 /2 2 2 /2 2 2 /2 /2.x x x xx e x e x e e  For very large | |,x  
2 /2xe  is extremely close to zero, so 

2 /2xe  is an approximate solution for very 
large | | .x  

 

4.23 (a)  Let 1/2
rx x . Then Eq. (4.40) becomes  

   
2 62 4

/2 62 4
0 2 3

0 0 0
/ 1rx rr r c xc x c xc e

c c c
 

Let 2 / /rE mE E h . Then Eq. (4.39) becomes 

2 / (2 1 2 )/ [( 1)( 2)]n n r nc c n E n n f , where nf  was defined as shown. We 

have 6 62 4 4 2 4 2
0 2 0 4 2 02 3

0 2 0 4 2 00 0
, , ,c cc c c c c cf f f f f f

c c c c c cc c
 . Hence 
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2 /2 2 4 6
0 0 0 2 0 2 4/ 1rx

r r rc e f x f f x f f f x .  

We have 2
2 2 (4 4 1 2 )/[(2 2 1)(2 2 2) (4 3 2 )/(4 2 )n r rf n E n n n E n n .  

 
 A C++ program is 
 #include <iostream> 
 #include <cmath> 
 using namespace std; 
 int main () { 
  int n; 
  double er, xr, fac, sum, term, psi; 
  label2: cout  <<  "Enter Er (enter 1000 to quit)"; 
  cin >> er; 
  if (er > 999) { 
   return 0; 
  } 
  for (xr=0; xr<=6; xr=xr+0.5)  { 
   fac=exp(-xr*xr/2); 
   sum=1; 
   term=1; 
   for (n=1; n<=9500; n=n+1)  { 
       term=term*(4*n-3-2*er)*xr*xr/(4*n*n-2*n); 
       if (fabs(fac*term) < 1e-15)  { 
    goto label1; 
      } 
      sum=sum+term; 
   } 
   cout << "Did not converge"; 
   return 0; 
   label1: psi=fac*sum; 
   cout  <<  " xr =  "   << xr  << "  Psi =  "  << psi  << "  n =  " <<  n << endl; 
  } 
  goto label2; 
 } 
 

www.ShimiPedia.ir



4-8 
Copyright © 2014 Pearson Education, Inc. 

 

 (b)  For 0.499, 0.500, 0.501,rE  the values of 0/c  at 4rx  are 0.684869, 
0.000335463, and –0.68198. 

 
4.24 (a)  With the harmonic-oscillator approximation for the molecular vibration, Eq. (4.61) 

gives the molecular vibration frequency as 13 18.65 10  s . From (4.59), 2 24k  
and 1 2 1 2/( )m m m m . From Table A.3 in the Appendix, 

24
23

1.008(34.97) g 1 1.627 10  g
(1.008 34.97) 6.022 10

 

 So 2 24k  = 4ˊ2(8.65 ×1013 s–1)2(1.627 × 10–27 kg) = 481 N/m. 

 (b)  1
2 h 0.5(6.626 × 10–34 J s)(8.65 × 1013 s–1) = 2.87 × 10–20 J. 

 (c)  From the last equation in (4.59), the force constant k of a molecule is found from the 
U(R) function. The electronic energy function U is found by repeatedly solving the 
electronic Schrödinger equation at fixed nuclear locations. The nuclear masses do not 
occur in the electronic Schrödinger equation, so the function U is independent of the 
nuclear masses and is the same for 2H35Cl as for 1H35Cl. Hence k is the same for these 
two molecules. From the first equation in (4.59), 1/2

2 1 1 2/ ( / ) , where 2 and 1 refer 
to 2H35Cl and 1H35Cl, respectively. From Table A.3, 

24
2 23

2.014(34.97) g 1 3.162 10  g
(2.014 34.97) 6.022 10

 

So 1/2
2 1 2 1( / )  (1.627/3.162)1/2(8.65 ×1013 s–1) = 6.20 ×1013 s–1. 

 
4.25 (a)  Putting 2 1v  and 2 2v  in the result of Prob. 4.27b, we have 

12885.98 cm 2e e ex  and 15667.98 cm 2 6e e ex . Subtracting twice the first 

equation from the second, we get 1103.98 cm 2 e ex  and 151.99 cme ex . The 

first equation then gives 1 1 12885.98 cm 2(51.99 cm ) 2989.96 cm .e  Also, 

e ec  ( 12989.96 cm )(2.99792 ×1010 cm/s) = 8.96366 × 1013 s–1 and e e e ex x c  

( 151.99 cm )(2.99792 ×1010 cm/s) = 1.559 × 1012 s–1. 
(b)  With 2 3v , the result of Prob. 4.27b becomes light 3 12e e ex   

3(2989.96 cm–1) – 12(51.99 cm–1) = 8346.00 cm–1. 
 
4.26 (a)  Using the harmonic-oscillator approximation, the energy difference between these 

two vibrational levels is h h c  (6.626 × 10–34 J s)(1359 cm–1)(2.998 × 1010 cm/s) = 
2.70 × 10–20 J. The Boltzmann distribution law (4.63) for these nondegenerate levels 
gives 20 23

1 0/ exp[( 2.70 10  J)/(1.381 10  J/K)(298 K)]N N  = 0.0014 at 25°C and 
20 23

1 0/ exp[( 2.70 10  J)/(1.381 10  J/K)(473 K)]N N  = 0.016 at 200°C. 
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(b)  h h c  (6.626 × 10–34 J s)(381 cm–1)(2.998 × 1010 cm/s) = 7.57 × 10–21 J. 
21 23

1 0/ exp[( 7.57 10  J)/(1.381 10  J/K)(298 K)]N N  = 0.16 at 25°C and 
21 23

1 0/ exp[( 7.57 10  J)/(1.381 10  J/K)(473 K)]N N  = 0.31 at 200°C. 

 
4.27 (a)  

1 2 21 1 1 1
light 2 1 2 2 1 12 2 2 2( )/ ( ) ( ) ( ) ( )e e e e e eE E h h h h x h h xv v v v =  

2 2
2 1 1 2 1 2( ) [( ) ( )]e e exv v v v v v   (Eq. 1). Use of the selection rule 2 1 1v v  

gives 2 2
light 1 1 1[ ( 1) 1] 2 ( 1).e e e e e ex xv v v  

(b)  Putting 1 0v  in Eq. 1 of part (a), we get 2
light 2 2 2( )e e exv v v . 

 
4.28 The Taylor series (4.85) of Prob. 4.1 with x R , ( ) ( ),f x U R  and ea R  gives 

2 3( ) ( ) / 0! ( )( ) / 1! ( )( ) /2! ( )( ) /3!e e e e e e eU R U R U R R R U R R R U R R R . 
Since eR  occurs at the minimum in the ( )U R  curve, we have ( ) 0.eU R  From (4.59), 

( ) .eU R k  The zero of potential energy can be chosen wherever we please, so we can 

take ( ) 0eU R , as in Fig. 4.6. Neglecting the 3( )eR R  term and higher terms, we thus 

have 2 21 1
2 2( ) ( ) ,eU R k R R kx  where ex R R . 

 
4.29 (a)  Putting R  and then eR R  in the Morse function, we get ( ) eU D  and 

( ) 0.eU R  So ( ) ( ) .e eU U R D  

 (b)  From (4.59), ( ).e ek U R  For the Morse function, 
( ) ( ) ( ) 2 ( )2 [1 ] 2 [ ]e e e ea R R a R R a R R a R R

e eU D e ae aD e e  and 
( ) 2 ( )2 [ 2 ].e ea R R a R R

eU aD ae ae  Then 2( ) 2 ( 2 ) 2e e e ek U R aD a a a D , so 
1/2( /2 ) .e ea k D  

 
4.30 We begin by finding combinations of m, l, and  that have dimensions of energy and of 

length. The reduced energy and x coordinate are /rE E A  and / .rx x B   

Let .a b cA m l  Using (4.71) and (4.70), we have  
[A] = ML2T–2 = [ a b cm l ] = 2 1 2M L (ML T ) M L T ,a b c a c b c c  so 

1, 2 2, 2.a c b c c  Hence 2, 1, 2c a b  and 2 2/ ( / ).rE E ml   

Let d e fB m l . We have 2 1 2[ ] L M L (ML T ) M Ld e f d f e f fB T , so  
0, 2 1, 0.d f e f f  Hence, 0, 0, 1,f d e  and / ,rx x l  as is obvious 

without doing the detailed analysis. From (4.78) and (4.79), 1/2 1/2
r B l  and 

5/2 5/2
r rB l . The Schrödinger equation 2( /2 )m E  becomes 
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2 5/2 2 2 1/2( /2 ) ( / )r r rm l ml E l  or 2 .r r rE  To put this equation in the form 
of Eq. (4.66) and the first equation in (4.82), we define 2r rG E  to give .r r rG  
The formula in cell B7 and the cells below it in Fig. 4.9 becomes =-2*$B$3. There is no 
penetration into the classically forbidden region, so we omit steps (c) and (d) at the end of 
Sec. 4.4. The variable /rx x l  runs from 0 to 1. We take the interval rs  as 0.01. We 
enter 0.0001 in C8. The r  formulas in column C are the same as in Fig. 4.9. The Solver 

is set to make C107 equal to zero by varying B3. The lowest three 2 2 24 / ( / )rE E h ml  
eigenvalues are found to be 4.9348021805, 19.7392075201, and 44.41320519866. (For 
maximum accuracy, use the Options button in the Solver to reduce the Precision to 

1410 . ) These rE  values correspond to E values of 2 2/h ml  times 0.12499999949, 

0.4999999675, and 1.124999630, as compared with the true values of 2 2/h ml  times 
2 /8n  0.125, 0.500, and 1.125. 

 
4.31 (a)  As in Prob. 4.30, we take combinations of m, l, and  that have dimensions of 

energy and of length; the reduced energy and x coordinate are /rE E A  = 2 2/ ( / )E ml  

and /rx x B  /x l . The Schrödinger equation is 2 2 2( /2 ) ( / )m K ml E , 
where K = 20 in regions I and III of Fig. 2.5, and K = 0 in region II. From (4.78) and 
(4.79), 1/2 1/2

r B l  and 5/2 5/2
r rB l . The Schrödinger equation 

becomes 2 5/2 2 2 1/2 2 2 1/2( /2 ) ( / ) ( / )r r r rm l K ml l ml E l  or 
(2 2 ) .r r rK E  The bound-state reduced energies are less than 20, so the maximum 

reduced energy we are interested in is 20. For reduced energies less than 20, the 
classically forbidden regions are regions I and III in Fig. 2.5. Reasonable starting and 
ending points are 1.5 units into each of the classically forbidden regions, so we shall take 

rx  to run from –1.5 to 2.5. A reasonable interval is 0.02rs  or 0.01. For greater 
accuracy, we shall use 0.01. The K value for regions I and III is entered into cell B2 of 
Fig. 4.9. In column B, rx  values in regions I (from –1.5 to 0) and III (from 1 to 2.5) 
contain the formula 2*$B$2-2*$B$3 and rx  values in region II (from 0 to 1) contain the 
formula -2*$B$3. The r  formulas in column C are the same as in Fig. 4.9. The Solver 
is set to make C407 equal to zero by varying B3. The Options button in the Solver is used 
to set the Precision at 810 . The bound-state 2 2 24 / ( / )rE E h ml  eigenvalues are found 
to be 2.772515720011 and 10.6051190761. (A value of 20.213299 is also obtained, but 
the graph shows that the solution for this energy does not go to zero asymptotically in the 
forbidden region.)  

 (b)  The spreadsheet of part (a) is modified by changing cell B2 from 20 to 50. The 
Solver gives the rE  values 3.3568218287, 13.256836483275, 29.003101429782, and 
47.66519784181. 
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 (c)  Substitution of 2 2
0 20 /V ml  in (2.34) for b gives b = 6.3245553203 and 

/ 2.0132,b  so there are three bound states. The Solver shows the roots of Eq. (2.35) to 
be 0.1407215, 0.5375806, 0.9995981.  From (2.34), 0, 20r rE V  
2.814429, 10.75161, 19.99196.  The eigenvalues found in (a) are rather inaccurate, 
indicating that we need to go further into the classically forbidden regions and decrease 
the interval. For 2 2

0 50 /V ml , one finds b = 10; 
0.06827142, 0.26951445, 0.58904615, 0.9628693; 

,50 3.413571, 13.47572 29.452308, 48.143464.rE   
The eigenvalues in (b) are rather inaccurate. 

 
4.32 We begin by finding combinations of m, c, and  that have dimensions of energy and of 

length. c has dimensions of energy divided by length4, so 2 2 4 2 2[ ] ML T /L MT Lc . 
The reduced energy and x coordinate are /rE E A  and / .rx x B   

Let a b dA m c . Using (4.71) and (4.70), we have  
[A] = ML2T–2 = [ a b dm c ] = 2 1 2 2 2 2 2M (ML T ) (MT L ) M L T ,a b d a b d b d b d  so  

 1, 2 2 2, 2 2a b d b d b d . Adding twice the third equation to the second, 
we get 6 2d  and 1

3d . Then 4
3b  and 2

3a . So 2/3 4/3 1/3/ / .rE E A E m c  

Let e f gB m c . We have 
2 1 2 2 2 2 2[ ] L M (ML T ) (MT L ) M L Te f g e f g f g f gB , so 

0, 2 2 1, 2 0e f g f g f g . Subtracting the third equation from the 
second, we get 1

3f . Then 1
6g  and 1

6e . So 1/6 1/3 1/6/ /rx x B x m c . The 

Schrödinger equation is 2 4( /2 )m cx E . From (4.78) and (4.79), 1/2
r B  

and 1/2 2 1/2 1/3 2/3 1/3
r rB B B m c . The Schrödinger equation becomes 

2 1/2 1/3 2/3 1/3 4 2/3 4/3 2/3 1/2 2/3 4/3 1/3 1/2( /2 ) r r r r rm B m c cx m c B m c E B  and 
4(2 2 )r r r r r rx E G , where 42 2r r rG x E . Let us find eigenvalues with 

10.rE  Setting this maximum rE  equal to rV , we have 410 rx  and the classically 
allowed region is bounded by 1.78rx . We shall start well into the classically 
forbidden region at 3.5rx  and go to 3.5rx  in steps of 0.05. Cell B7 of Fig. 4.9 
contains the formula 2*A7^4-2*$B$3 and this is copied to other column B cells. With 
0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1. 
The Solver gives the lowest three eigenvalues as 

2/3 4/3 1/3/ 0.667986133, 2.39364258, 4.69678795.rE E m c  

 

4.33 Proceeding similarly as in Prob. 4.32, we have 2 2 8 2 6[ ] ML T / L MT La .   
/rE E A  and / .rx x B  Let b c dA m a . Then [A] = ML2T–2 = [ b c dm a ] = 
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2 1 2 6 2 6 2M (ML T ) (MT L ) M L T ,b c d b c d c d c d  so 
1, 2 6 2, 2 2b c d c d c d .  81 4

5 5 5, ,d c b .  
4/5 8/5 1/5/ / .rE E A E m a   Let e f gB m a . We have 
2 1 2 6 2 6 2[ ] L M (ML T ) (MT L ) M L Te f g e f g f g f gB , so 

0, 2 6 1, 2 0e f g f g f g .     1 1 1
10 5 10, , .g f e   

1/10 1/5 1/10/ /rx x B x m a .  The Schrödinger equation is 2 8( /2 )m ax E . 

From (4.78) and (4.79), 1/2
r B and 1/2 2 1/2 1/5 2/5 1/5

r rB B B m a . The 
Schrödinger equation becomes 

2 1/2 1/5 2/5 1/5 8 4/5 8/5 4/5 1/2 4/5 8/5 1/5 1/2( /2 ) r r r r rm B m a ax m a B m a E B  and 
8(2 2 )r r r r r rx E G , where 82 2r r rG x E . Let us find eigenvalues with 

10.rE  Setting this maximum rE  equal to rV , we have 810 rx  and the classically 
allowed region is bounded by 1.33rx . We shall start well into the classically 
forbidden region at 3rx  and go to 3rx  in steps of 0.02. Cell B7 of Fig. 4.9 
contains the formula 2*A7^8-2*$B$3 and this is copied to other column B cells. With 
0.001 in cell C8, a suitable Precision (set by clicking the Solver Options button) is 0.1. 
The Solver gives the lowest three eigenvalues as 4/5 8/5 1/5/ /rE E A E m a  = 
0.70404876, 2.731532, 5.884176. 

 

4.34 Proceeding similarly as in Prob. 4.32, we have 2 2 2[ ] ML T / L MT Lb .   
/rE E A  and / .rx x B  Let a c dA m b . Then [A] = ML2T–2 = [ a c dm b ] = 
2 1 2 2 2M (ML T ) (MT L) M L T ,a c d a c d c d c d  so 1a c d , 2 2,c d  

2 2.c d  2 2 1
3 3 3,d c a . So 1/3 2/3 2/3/ / .rE E A E m b  Let e f gB m b . 

We have 2 1 2 2 2[ ] L M (ML T ) (MT L) M L Te f g e f g f g f gB , so 
0, 2 1,e f g f g  2 0f g  and 1 2 1

3 3 3, , .g f e   
1/3 2/3 1/3/ /rx x B x m b .  The Schrödinger equation is 2( /2 )m bx E . 

From (4.78) and (4.79), 1/2
r B and 1/2 2 1/2 2/3 4/3 2/3

r rB B B m b . The 
Schrödinger equation becomes 

2 1/2 2/3 4/3 2/3 1/3 2/3 1/3 1/2 1/3 2/3 2/3 1/2( /2 ) r r r r rm B m b bx m b B m b E B  and 

(2 2 )r r r r r rx E G , where 2 2r r rG x E . Let us find eigenvalues with 

8.rE  Setting this maximum rE  equal to rV , we have 8 rx  and the classically 
allowed region is 0 8rx . We shall go from 0rx  to 10 in steps of 0.05. Cell B7 of 
Fig. 4.9 contains the formula 2*A7-2*$B$3 and this is copied to other column B cells. 
The Solver gives the lowest four eigenvalues as 1.85575706, 3.24460719, 4.38167006, 
5.38661153. 
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4.35 (a)  Let / .rE E A   a has dimensions of length, and just as 2 2/A ml  in Prob. 4.30, we 

have 2 2/A ma  here. Hence, 2/ 31.5/( ) ,r rx x
rV V A e e where / .rx x a   

 
 
 
  
(b)   

 
 (c)  For 0.1,rE  the boundaries of the classically allowed region are where 

0.1.r rV E  The table used to make the graph in (b) shows that 0.1rV  at 
2.9.rx  We shall go from 7rx  to 7 in steps of 0.05. (Use of too small a range for x 

can give erroneous results. For example going from 4  to 4 gives only 3 states instead of 
4. Also, the value of the highest energy level found varies significantly with the size of 
the range.) Setting 0.1rE , we get a function with 4 nodes interior to the boundary 
points, indicating that there are 4 states below 0.1rE . These are found to be 

2 2/( / ) 6.125000942,rE E ma  –3.1250035, –1.125005, and –0.1226. For the lowest 
state the Solver might say that it could not find a solution, but the appearance of the wave 
function shows that the Solver has found a good solution; you could improve it by 
varying by hand the last digit of the Solver’s value. If we go from –8 to 8 in steps of 0.05, 
the highest energy level is improved to –0.1241.  

 

4.36 (a)  2 1 1/2 3/2 2 3/2 1/2 1 4 1/2 1/21
4/ ( )/rV V A b a m b bx ab m x m b    

1/2 1/2 1 2 2 41/(4 )a b m x abm x 2 41/(4 ) ,r ra x ax  where we used the expression for 
c given in the statement of this problem, (4.73) with k replaced by b, and rx x B  

1/4 1/4 1/2 .rm b x  
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 (c)  The graph gives 4.9rx  at 10,r rE V  and these are the boundary points of the 

classically allowed region. We shall go from 6.5rx  to 6.5 in steps of 0.05. We 
modify the spreadsheet of Fig. 4.9 by changing the formulas in column B to correspond 
to 2 2r rV E  with 0.05.a  Putting 10rE  in the spreadsheet gives a function with 12 
nodes, indicating that 12 states have energies below 10. One finds the following rE  
values: 0.97336479758, 0.97339493833903, 2.7958839769, 2.79920822, 4.315510072, 
4.4214678772594, 5.3827766596746, 5.9746380026562, 6.8331392725971, 
7.7437224213536, 8.7368315651332, 9.7948731480794, where the number of interior 
nodes goes from 0 to 11. 

 
4.37 (a)  The potential-energy function is 
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